
A Hardware Accelerator for
Protocol Buffers
Sagar Karandikar 1,2, Chris Leary 2, Chris Kennelly 2, Jerry Zhao 1, Dinesh Parimi 1,
Borivoje Nikolić 1, Krste Asanović 1, Parthasarathy Ranganathan 2

1 UC Berkeley, 2 Google

sagark@eecs.berkeley.edu

MICRO ‘21 paper: https://sagark.org/assets/pubs/protoacc-micro2021-preprint.pdf

1

What is Protocol Buffers (“protobuf”)?

2

● Google’s serialization framework
● Open-source and also widely used outside Google

○ https://github.com/protocolbuffers/protobuf

● Serialization/Deserialization are foundational operations in Warehouse Scale
Computers (WSCs). Two key use cases:

Formatting data for storage02
● Storage APIs commonly expect data as contiguous seq. of bytes
● Serialize in-mem service/app data to seq. of bytes for storage
● Deserialize seq. of bytes read from storage to in-mem format

usable by services

Inter-service communication
via RPC01

● Serialize arguments to send RPC request
● Deserialize return values from received RPC response
● Potentially high fan-out

Why accelerate protobuf?

of cycles in key
microservices spent in
serialization/deserialization

Facebook, 2020 [2]

6%
of fleet-wide cycles spent in
protobuf

Google, now [this work]

9.6%
of fleet-wide cycles spent in
protobuf

Google, 2015 [1]

5%

3

An analysis of fleet-wide
protobuf usage at Google

Key insights for serialization framework and
serialization accelerator design, based on

fleet-wide profiling at Google.

1

Key Contributions

4

Profiling insight #1: Acceleration opportunity

5(1) An analysis of fleet-wide protobuf usage at Google

of fleet-wide cycles
could be offloaded by

a protobuf ser/des
hardware accelerator

3.45%

Fleet-wide C++ protobuf cycles by operation.
Total pie = 8.4% of fleet-wide cycles.

Usage of serialization
framework APIs and formats
tends to be stable over time,
making hardware acceleration
viable.

Profiling insight #2: HW feasibility

6(1) An analysis of fleet-wide protobuf usage at Google

proto3 was released in
mid-2016, but 96% of
protobuf bytes
serialized/deserialized
remain defined in proto2

Profiling insight #3: Near-core, not PCIe-attached

7(1) An analysis of fleet-wide protobuf usage at Google

A protobuf
accelerator is most
amenable to being
placed near the
CPU core.

A common alternative
proposal is to place a
protobuf accelerator on a
PCIe-attached NIC.

Accesses into
in-memory rep.
ill-suited to PCIe

Commonly small, irregularly
strided, multiple chained
pointer derefs. Compounded
by deser serial processing.

% of cycles not
RPC-related

83% of deserialization
cycles and 64% of
serialization cycles are not
RPC-related.

In-memory rep. is
commonly sparsely
populated

90% of messages fleet-wide
only contain values for less
than 52% of their defined
fields.

Handling other
encapsulations

A SmartNIC must handle all
encapsulations between proto
msg. and frame
egress/ingress.

Profiling insight #4: A variety of message shapes

8

]
● 56% of messages are 32B or less

○ Accelerator should operate at entire msg.
granularity, near-core, without CPU
intervention

● Lots of data is in large byte fields
○ Accelerator needs efficient memcpy

support

● Ser/des CPU cycles split across
many field types
○ Accelerator needs to efficiently handle all

field types

● 99.999% of bytes of protobuf data
are at sub-message depth 25 or less

(1) An analysis of fleet-wide protobuf usage at Google

An analysis of fleet-wide
protobuf usage at Google

Key insights for serialization framework and
serialization accelerator design, based on

fleet-wide profiling at Google.

1

An open-source hyperscale
protobuf benchmark

HyperProtoBench, an open-source
benchmark suite representative of key
protobuf users at Google.
github.com/google/HyperProtoBench

2

Key Contributions

9

HyperProtoBench: Open-source protobuf benchmarks
representative of key protobuf-user services at Google

10(2) An open-source hyperscale protobuf benchmark

Service selection

Select the top five
fleet-wide serialization
and deserialization
users. Four services
appear in both = six
benchmarks.

protobufz
collection

Collect fleet-wide
protobuf message
“shape” information for
each service.

Construct
distributions
from profiles

Construct protobuf
message shape
distributions based on
the per-service profiling
data.

Open-sourced
on GitHub

github.com/google/
HyperProtoBench

Sample from
distribs, gen.

bmarks

Per-selected service,
generate a .proto file
with message
definitions and a C++
benchmark that
constructs, mutates,
and ser/des
messages.

An analysis of fleet-wide
protobuf usage at Google

Key insights for serialization framework and
serialization accelerator design, based on

fleet-wide profiling at Google.

1

An open-source hyperscale
protobuf benchmark

HyperProtoBench, an open-source
benchmark suite representative of key
protobuf users at Google.
github.com/google/HyperProtoBench

2

An open-source RTL protobuf
accelerator

A novel, open-source protobuf accelerator
design aligned with profiling insights,

implemented in RTL and integrated into a
RISC-V SoC w/BOOM OoO core.

github.com/ucb-bar/protoacc

3

Key Contributions

11

Generating “programming” for a protobuf accelerator
● Accelerator Descriptor Tables (ADTs)

○ Describe the layout of messages in application memory
○ Automatically generated by modified protoc compiler
○ Created/populated once at application load time
○ One per message-type

● hasbits bit field
○ HW serializer must know which fields are present (i.e., set) in the in-memory C++ representation
○ Standard protobuf C++ message objects already track presence via hasbits

■ A set of bits where the bit corresponding to a field is set if the field is present
○ Modify protoc to emit sparse hasbits encoding for efficient accelerator access
○ One per message-instance

12(3) An open-source RTL protobuf accelerator

In contrast, the closest prior work [3] relies on per message-instance “schemas” maintained by code
added to all field setters/clear methods, adding significant CPU/memory overhead.

Profiling insight #5: Protobuf accelerator
programming tradeoffs

Our software modifications for accelerator support are more efficient in CPU/memory overhead terms
than prior work [3] for over 92% of fleet-wide messages.

13(3) An open-source RTL protobuf accelerator

Field number usage density distribution for all message types, weighted by # of observed messages of each type

Advantageous for our design

Ad
v.

, p
rio

r w
or

k

Protobuf accelerator: System overview

● Accelerator written in Chisel RTL [4]

● Integrated into Chipyard RISC-V SoC
generator [5]

● SonicBOOM OoO RISC-V as application core
[6]
○ IPC-comparable on SPEC17 with ARM Cortex

A72-like cores

● Accelerator interfaces:
○ Custom RISC-V instructions from core via RoCC
○ Coherent memory access (via L2) using 128-bit

TileLink
○ Page-table walker access (accelerator operates

on virtual addresses)

14(3) An open-source RTL protobuf accelerator

Protobuf accelerator: Deserializer overview

15

Low-level SW API:
● One RoCC setup instruction to supply accelerator

arena (amortized across several messages)
● Two non-blocking RoCC instructions to kick-off

deserialization
● One RoCC instruction to block on all in-flight

deserializations

Key features/insights:
● Combinational varint decode, sub-message support

(on-chip metadata stack sized to 25 based on profiling)
● Automatically allocates/constructs C++ objects for

sub-messages, std::string for strings (including
SSO), repeated field objects in accel. arena

● Also populates hasbits required for serialization-side

(3) An open-source RTL protobuf accelerator

Protobuf accelerator: Serializer overview

Low-level SW API:
● One RoCC setup instruction to supply accelerator

arena (amortized across several messages)
● Two non-blocking RoCC instructions to kick-off

serialization
● One RoCC instruction to block on all in-flight

serializations

Key features/insights:
● Combinational varint encode, sub-message support

(on-chip metadata stack sized to 25 based on
profiling)

● Fields are handled in reverse field # order and data is
written from high-to-low address: more efficient
handling of length-delimited lengths

● Handling of individual fields parallelized across
multiple field serializer units

16(3) An open-source RTL protobuf accelerator

An analysis of fleet-wide
protobuf usage at Google

Key insights for serialization framework and
serialization accelerator design, based on

fleet-wide profiling at Google.

1

An open-source hyperscale
protobuf benchmark

HyperProtoBench, an open-source
benchmark suite representative of key
protobuf users at Google.
github.com/google/HyperProtoBench

2

An open-source RTL protobuf
accelerator

A novel, open-source protobuf accelerator
design aligned with profiling insights,

implemented in RTL and integrated into a
RISC-V SoC w/BOOM OoO core.

github.com/ucb-bar/protoacc

3

A reproducible, end-to-end
evaluation

HyperProtoBench and μbmarks running on
RTL-impl. of accelerated system,
cycle-exactly simulated in FireSim. Up to 6.9x
improvement vs. Xeon, 15.5x vs. BOOM.
Reproduced by artifact evaluators.

4

Key Contributions

17

Fully open-sourced,
reproduced by artifact
evaluators.

Evaluation methodology/overview

18(4) A reproducible end-to-end evaluation

RTL
implementation

protobuf accelerator and
RISC-V SoC

ECAD tools
commercial 22nm FinFET

process

FireSim [7] FPGA-
accelerated simulation

boot Linux, run bmarks
modeled @ 2 GHz

Microbenchmarks

3.8x average vs. Xeon
(up to 6.9x)

10.1x average vs. BOOM
(up to 15.5x)

HyperProtoBench

See next slide

Area

Deserializer: 0.133 mm2

Serializer: 0.278 mm2

Frequency

Deserializer: 1.95 GHz
Serializer: 1.84 GHz

MICRO-54 Distinguished
Artifact Winner!

HyperProtoBench results

19(4) A reproducible end-to-end evaluation

] A savings of 2.5%
of fleet-wide
cycles

Accelerator achieves geomean
6.2x improvement
vs. SonicBOOM

3.8x improvement
vs. Xeon E5-2686 v4 *

* despite RISC-V SoC’s weaker
uncore/supporting components

Deserialization Performance

Serialization Performance

An analysis of fleet-wide
protobuf usage at Google

Key insights for serialization framework and
serialization accelerator design, based on

fleet-wide profiling at Google.

1

An open-source hyperscale
protobuf benchmark

HyperProtoBench, an open-source
benchmark suite representative of key
protobuf users at Google.
github.com/google/HyperProtoBench

2

An open-source RTL protobuf
accelerator

A novel, open-source protobuf accelerator
design aligned with profiling insights,

implemented in RTL and integrated into a
RISC-V SoC w/BOOM OoO core.

github.com/ucb-bar/protoacc

3

A reproducible, end-to-end
evaluation

HyperProtoBench and μbmarks running on
RTL-impl. of accelerated system,
cycle-exactly simulated in FireSim. Up to 6.9x
improvement vs. Xeon, 15.5x vs. BOOM.
Reproduced by artifact evaluators.

4

Conclusion

20

References

[1] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Profiling a warehouse-scale
computer. In Proceedings of the 42nd Annual International Symposium on Computer Architecture (ISCA '15). Association for Computing Machinery, New York, NY, USA,
158–169. DOI:https://doi.org/10.1145/2749469.2750392

[2] Akshitha Sriraman and Abhishek Dhanotia. 2020. Accelerometer: Understanding Acceleration Opportunities for Data Center Overheads at Hyperscale. In Proceedings of
the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS '20). Association for Computing Machinery,
New York, NY, USA, 733–750. DOI:https://doi.org/10.1145/3373376.3378450

[3] Arash Pourhabibi, Siddharth Gupta, Hussein Kassir, Mark Sutherland, Zilu Tian, Mario Paulo Drumond, Babak Falsafi, and Christoph Koch. 2020. Optimus Prime:
Accelerating Data Transformation in Servers. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS '20). Association for Computing Machinery, New York, NY, USA, 1203–1216. DOI:https://doi.org/10.1145/3373376.3378501

[4] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas Avižienis, John Wawrzynek, and Krste Asanović. 2012. Chisel: constructing hardware in
a Scala embedded language. In Proceedings of the 49th Annual Design Automation Conference (DAC '12). Association for Computing Machinery, New York, NY, USA,
1216–1225. DOI:https://doi.org/10.1145/2228360.2228584

[5] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar Karandikar, Harrison Liew, Albert Magyar, Howard Mao, Albert Ou, Nathan Pemberton, Paul Rigge, Colin
Schmidt, John Wright, Jerry Zhao, Yakun Sophia Shao, Krste Asanovic, and Borivoje Nikolic. 2020. Chipyard: Integrated Design, Simulation, and Implementation Framework
for Custom SoCs. In IEEE Micro, vol. 40, no. 4, pp. 10-21, 1 July-Aug. 2020, DOI: 10.1109/MM.2020.2996616.

[6] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic. 2020. SonicBOOM: The 3rd Generation Berkeley Out-of-Order Machine. In Fourth Workshop on
Computer Architecture Research with RISC-V (CARRV 2020). https://carrv.github.io/2020/papers/CARRV2020_paper_15_Zhao.pdf

[7] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid, Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra, Qijing Huang,
Kyle Kovacs, Borivoje Nikolic, Randy Katz, Jonathan Bachrach, and Krste Asanović. 2018. FireSim: FPGA-accelerated cycle-exact scale-out system simulation in the public
cloud. In Proceedings of the 45th Annual International Symposium on Computer Architecture (ISCA '18). IEEE Press, 29–42. DOI:https://doi.org/10.1109/ISCA.2018.00014

21

A Hardware Accelerator for
Protocol Buffers
Sagar Karandikar 1,2, Chris Leary 2, Chris Kennelly 2, Jerry Zhao 1, Dinesh Parimi 1,
Borivoje Nikolić 1, Krste Asanović 1, Parthasarathy Ranganathan 2

1 UC Berkeley, 2 Google

sagark@eecs.berkeley.edu

MICRO ‘21 paper: https://sagark.org/assets/pubs/protoacc-micro2021-preprint.pdf

22

