
A Hardware Accelerator for 
Protocol Buffers
Sagar Karandikar 1,2, Chris Leary 2, Chris Kennelly 2, Jerry Zhao 1, Dinesh Parimi 1, 
Borivoje Nikolić 1, Krste Asanović 1, Parthasarathy Ranganathan 2

1 UC Berkeley, 2 Google

sagark@eecs.berkeley.edu

MICRO ‘21 paper: https://sagark.org/assets/pubs/protoacc-micro2021-preprint.pdf

1



What is Protocol Buffers (“protobuf”)?
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● Google’s serialization framework
● Open-source and also widely used outside Google

○ https://github.com/protocolbuffers/protobuf

● Serialization/Deserialization are foundational operations in Warehouse Scale 
Computers (WSCs). Two key use cases:

Formatting data for storage02
● Storage APIs commonly expect data as contiguous seq. of bytes
● Serialize in-mem service/app data to seq. of bytes for storage
● Deserialize seq. of bytes read from storage to in-mem format 

usable by services

Inter-service communication 
via RPC01

● Serialize arguments to send RPC request
● Deserialize return values from received RPC response
● Potentially high fan-out



Why accelerate protobuf?

of cycles in key 
microservices spent in 
serialization/deserialization

Facebook, 2020 [2]

6%
of fleet-wide cycles spent in 
protobuf

Google, now [this work]

9.6%
of fleet-wide cycles spent in 
protobuf

Google, 2015 [1]

5%
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An analysis of fleet-wide 
protobuf usage at Google

Key insights for serialization framework and 
serialization accelerator design, based on 

fleet-wide profiling at Google.

1

Key Contributions
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Profiling insight #1: Acceleration opportunity

5(1) An analysis of fleet-wide protobuf usage at Google

of fleet-wide cycles 
could be offloaded by 

a protobuf ser/des 
hardware accelerator

3.45%

Fleet-wide C++ protobuf cycles by operation.
Total pie = 8.4% of fleet-wide cycles.



Usage of serialization 
framework APIs and formats 
tends to be stable over time, 
making hardware acceleration 
viable.

Profiling insight #2: HW feasibility

6(1) An analysis of fleet-wide protobuf usage at Google

proto3 was released in 
mid-2016, but 96% of 
protobuf bytes 
serialized/deserialized 
remain defined in proto2



Profiling insight #3: Near-core, not PCIe-attached

7(1) An analysis of fleet-wide protobuf usage at Google

A protobuf 
accelerator is most 
amenable to being 
placed near the 
CPU core.

A common alternative 
proposal is to place a 
protobuf accelerator on a 
PCIe-attached NIC.

Accesses into 
in-memory rep. 
ill-suited to PCIe

Commonly small, irregularly 
strided, multiple chained 
pointer derefs. Compounded 
by deser serial processing.

% of cycles not 
RPC-related

83% of deserialization 
cycles and 64% of 
serialization cycles are not 
RPC-related.

In-memory rep. is 
commonly sparsely 
populated

90% of messages fleet-wide 
only contain values for less 
than 52% of their defined 
fields.

Handling other 
encapsulations

A SmartNIC must handle all 
encapsulations between proto 
msg. and frame 
egress/ingress.



Profiling insight #4: A variety of message shapes
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]
● 56% of messages are 32B or less

○ Accelerator should operate at entire msg. 
granularity, near-core, without CPU 
intervention

● Lots of data is in large byte fields
○ Accelerator needs efficient memcpy 

support

● Ser/des CPU cycles split across 
many field types
○ Accelerator needs to efficiently handle all 

field types

● 99.999% of bytes of protobuf data 
are at sub-message depth 25 or less

(1) An analysis of fleet-wide protobuf usage at Google



An analysis of fleet-wide 
protobuf usage at Google

Key insights for serialization framework and 
serialization accelerator design, based on 

fleet-wide profiling at Google.
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An open-source hyperscale 
protobuf benchmark

HyperProtoBench, an open-source 
benchmark suite representative of key 
protobuf users at Google.
github.com/google/HyperProtoBench
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Key Contributions
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HyperProtoBench: Open-source protobuf benchmarks 
representative of key protobuf-user services at Google

10(2) An open-source hyperscale protobuf benchmark

Service selection

Select the top five 
fleet-wide serialization 
and deserialization 
users. Four services 
appear in both = six 
benchmarks.

protobufz 
collection

Collect fleet-wide 
protobuf message 
“shape” information for 
each service.

Construct 
distributions 
from profiles

Construct protobuf 
message shape 
distributions based on 
the per-service profiling 
data.

Open-sourced 
on GitHub

github.com/google/
HyperProtoBench

Sample from 
distribs, gen. 

bmarks

Per-selected service, 
generate a .proto  file 
with message 
definitions and a C++ 
benchmark that 
constructs, mutates, 
and ser/des 
messages.



An analysis of fleet-wide 
protobuf usage at Google

Key insights for serialization framework and 
serialization accelerator design, based on 

fleet-wide profiling at Google.
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An open-source hyperscale 
protobuf benchmark

HyperProtoBench, an open-source 
benchmark suite representative of key 
protobuf users at Google.
github.com/google/HyperProtoBench
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An open-source RTL protobuf 
accelerator

A novel, open-source protobuf accelerator 
design aligned with profiling insights, 

implemented in RTL and integrated into a 
RISC-V SoC w/BOOM OoO core.

github.com/ucb-bar/protoacc
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Key Contributions
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Generating “programming” for a protobuf accelerator
● Accelerator Descriptor Tables (ADTs)

○ Describe the layout of messages in application memory
○ Automatically generated by modified protoc compiler
○ Created/populated once at application load time
○ One per message-type 

● hasbits bit field
○ HW serializer must know which fields are present (i.e., set) in the in-memory C++ representation
○ Standard protobuf C++ message objects already track presence via hasbits 

■ A set of bits where the bit corresponding to a field is set if the field is present
○ Modify protoc to emit sparse hasbits encoding for efficient accelerator access
○ One per message-instance

12(3) An open-source RTL protobuf accelerator

In contrast, the closest prior work [3] relies on per message-instance “schemas” maintained by code 
added to all field setters/clear methods, adding significant CPU/memory overhead.



Profiling insight #5: Protobuf accelerator 
programming tradeoffs

Our software modifications for accelerator support are more efficient in CPU/memory overhead terms 
than prior work [3] for over 92% of fleet-wide messages.

13(3) An open-source RTL protobuf accelerator

Field number usage density distribution for all message types, weighted by # of observed messages of each type

Advantageous for our design
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Protobuf accelerator: System overview

● Accelerator written in Chisel RTL [4]

● Integrated into Chipyard RISC-V SoC 
generator [5]

● SonicBOOM OoO RISC-V as application core 
[6]
○ IPC-comparable on SPEC17 with ARM Cortex 

A72-like cores

● Accelerator interfaces:
○ Custom RISC-V instructions from core via RoCC
○ Coherent memory access (via L2) using 128-bit 

TileLink
○ Page-table walker access (accelerator operates 

on virtual addresses)

14(3) An open-source RTL protobuf accelerator



Protobuf accelerator: Deserializer overview
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Low-level SW API:
● One RoCC setup instruction to supply accelerator 

arena (amortized across several messages)
● Two non-blocking RoCC instructions to kick-off 

deserialization
● One RoCC instruction to block on all in-flight 

deserializations

Key features/insights:
● Combinational varint decode, sub-message support 

(on-chip metadata stack sized to 25 based on profiling)
● Automatically allocates/constructs C++ objects for 

sub-messages, std::string for strings (including 
SSO), repeated field objects in accel. arena

● Also populates hasbits required for serialization-side

(3) An open-source RTL protobuf accelerator



Protobuf accelerator: Serializer overview

Low-level SW API:
● One RoCC setup instruction to supply accelerator 

arena (amortized across several messages)
● Two non-blocking RoCC instructions to kick-off 

serialization
● One RoCC instruction to block on all in-flight 

serializations

Key features/insights:
● Combinational varint encode, sub-message support 

(on-chip metadata stack sized to 25 based on 
profiling)

● Fields are handled in reverse field # order and data is 
written from high-to-low address: more efficient 
handling of length-delimited lengths

● Handling of individual fields parallelized across 
multiple field serializer units

16(3) An open-source RTL protobuf accelerator



An analysis of fleet-wide 
protobuf usage at Google

Key insights for serialization framework and 
serialization accelerator design, based on 

fleet-wide profiling at Google.

1

An open-source hyperscale 
protobuf benchmark

HyperProtoBench, an open-source 
benchmark suite representative of key 
protobuf users at Google.
github.com/google/HyperProtoBench

2

An open-source RTL protobuf 
accelerator

A novel, open-source protobuf accelerator 
design aligned with profiling insights, 

implemented in RTL and integrated into a 
RISC-V SoC w/BOOM OoO core.

github.com/ucb-bar/protoacc
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A reproducible, end-to-end 
evaluation

HyperProtoBench and μbmarks running on 
RTL-impl. of accelerated system, 
cycle-exactly simulated in FireSim. Up to 6.9x 
improvement vs. Xeon, 15.5x vs. BOOM. 
Reproduced by artifact evaluators.
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Key Contributions
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Fully open-sourced, 
reproduced by artifact 
evaluators.

Evaluation methodology/overview

18(4) A reproducible end-to-end evaluation

RTL 
implementation 

protobuf accelerator and 
RISC-V SoC

ECAD tools
commercial 22nm FinFET 

process

FireSim [7] FPGA- 
accelerated simulation

boot Linux, run bmarks
modeled @ 2 GHz

Microbenchmarks

3.8x average vs. Xeon 
(up to 6.9x)

10.1x average vs. BOOM 
(up to 15.5x)

HyperProtoBench

See next slide

Area

Deserializer: 0.133 mm2

Serializer: 0.278 mm2

Frequency

Deserializer: 1.95 GHz
Serializer: 1.84 GHz

MICRO-54 Distinguished 
Artifact Winner!



HyperProtoBench results

19(4) A reproducible end-to-end evaluation

] A savings of 2.5% 
of fleet-wide 
cycles

Accelerator achieves geomean
6.2x improvement 
vs. SonicBOOM

3.8x improvement 
vs. Xeon E5-2686 v4 *

* despite RISC-V SoC’s weaker 
uncore/supporting components

Deserialization Performance

Serialization Performance



An analysis of fleet-wide 
protobuf usage at Google

Key insights for serialization framework and 
serialization accelerator design, based on 

fleet-wide profiling at Google.
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An open-source hyperscale 
protobuf benchmark

HyperProtoBench, an open-source 
benchmark suite representative of key 
protobuf users at Google.
github.com/google/HyperProtoBench

2

An open-source RTL protobuf 
accelerator

A novel, open-source protobuf accelerator 
design aligned with profiling insights, 

implemented in RTL and integrated into a 
RISC-V SoC w/BOOM OoO core.

github.com/ucb-bar/protoacc

3

A reproducible, end-to-end 
evaluation

HyperProtoBench and μbmarks running on 
RTL-impl. of accelerated system, 
cycle-exactly simulated in FireSim. Up to 6.9x 
improvement vs. Xeon, 15.5x vs. BOOM. 
Reproduced by artifact evaluators.
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