

Gemmini: Enabling Systematic Deep-Learning Architecture Evaluation via Full-Stack Integration

Hasan Genc, Seah Kim, Alon Amid, Ameer Haj-Ali, Vighnesh Iyer, Pranav Prakash, Jerry Zhao, Daniel Grubb, Harrison Liew, Howard Mao, Albert Ou, Colin Schmidt, Samuel Steffl, John Wright, Ion Stoica, Jonathan Ragan-Kelley, Krste Asanovic, Borivoje Nikolic, Yakun Sophia Shao

Quick Stats

- Best Paper at DAC 2021
- Tutorial at IISWC 2021
- DNN accelerator generator
 - Full-system, full-stack visibility
- Taped out
 - Intel22FL
 - ESSCIRC 2021
 - GF12
 - TSMC16

DNNs are exploding in popularity...

Matt Christenson/BLM/2017

By Dllu - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/ w/index.php?curid=64517567

Apple Support

Which means DNN ACCELERATORS are exploding in popularity...

Edge TPU

Tesla FSD

Cloud TPU

Which means DNN accelerator **GENERATORS** are exploding in popularity...

MAGNet

Full-System Visibility

Full-System Visibility: SoC

Full-System Visibility: Memory Hierarchy

Full-System Visibility: Virtual Addresses

Full-System Visibility: Host CPUs

Oc Interconnects ate

Full-System Visibility: Operating System

Full-Stack Visibility

Gemmini

- DNN accelerator generator
 - RTL
 - Simulations
 - Runs Linux
- Flexible hardware template
- Full-stack
- Full-system

Gemmini: Spatial Array

- Parameters:
 - Dataflow
 - Datatypes
 - Dimensions
 - Pipelining

Spatial
Array

Gemmini: Spatial Array

- Parameters:
 - Dataflow
 - Datatypes
 - Dimensions
 - Pipelining

Gemmini: Spatial Array

- Parameters:
 - Dataflow
 - Datatypes
 - Dimensions
 - Pipelining

Spatial	
Array	

Gemmini: Non-GEMM Functionality

• Can be optimized out at elaboration-time

	Transposer im2col			
	ReLUImage: Constraint of the second seco			
K 17	Pooling Engine Multiplier			

Gemmini: Local Scratchpad

- Parameters:
 - Capacity
 - Banks
 - Single- or dual-port

Scratchpad Bank 0 Bank K		

Gemmini: Global Memory

- Parameters:
 - Capacity
 - Banks
 - DRAM controller

Gemmini: Host CPU

20

- Parameters:
 - In-order/out-of-order
 - ROB capacity
 - L1 capacity
 - Branch predictor

Gemmini: Virtual Address Translation

- Parameters:
 - TLB capacity
 - TLB hierarchy
 - e.g. L2 TLB

Gemmini: Full SoC

Gemmini: Programming Model

Performance: Evaluating Host CPUs

• "Im2col" runs on CPU, matmuls run on Gemmini

Small In-Order CPU + Gemmini Large OoO CPU + Gemmini

Performance: Evaluating Optional Functional Units

• "Im2col" and matmuls both run on Gemmini

Small In-Order CPU + Gemmini with On-The-Fly Im2Col

Large OoO CPU + Gemmini with On-The-Fly Im2Col

Performance: Overall

• DNNs:

- ResNet50: 40.3 FPS
- AlexNet: 79.3 FPS
- MobileNet: 18.7 FPS
- BERT: 167x speedup
- About 80% as fast as NVDLA

- Small In-Order CPU + Gemmini
- Large OoO CPU + Gemmini
- Small In-Order CPU + Gemmini with On-The-Fly Im2Col
- Large OoO CPU + Gemmini with On-The-Fly Im2Col
 NVDLA

How Does the Full System and Full Stack Affect Performance?

Case Study: How Does Virtual Memory Affect DNN Accelerator Performance?

Case Study: Virtual Memory for DNNs

Case Study: Virtual Memory for DNNs

• Small private TLB much more impactful

Case Study: Virtual Memory for DNNs

- Small private TLB much more impactful
- Low-cost optimizations:
 - Single-entry LO TLB filters out consecutive TLB requests to same page

		Share 0	d TLB E	ntries 512
ntries	4 -	1.13x	1.15x	1.15x
Private TLB Er	8 -	1.14x	1.15x	1.15x
	16 -	1.14x	1.15x	1.15x
			_	

With LO TLB

Case Study: Memory Partitioning Schemes for Multi-Accelerator SoCs

Case Study: Memory Partitioning

SoC

Case Study: Memory Partitioning

- Single core
 - Private scratchpad more helpful
 - Much better for convs

Case Study: Memory Partitioning

- Single core
 - Private scratchpad more helpful
 - Much better for convs

- Dual core
 - Shared L2 more helpful
 - Much better for residual additions

Conclusion

- Gemmini is:
 - Full-system
 - Full-stack
- Enables DSE and hardware/software co-design
 - Layer composition vs. memory partitioning
 - Virtual address translation design
- Open-source!
 - github.com/ucb-bar/gemmini

Funded by DARPA RTML program (contract FA8650-20-2-7006)

Acknowledgements

This research was, in part, funded by the U.S. Government under the DARPA RTML program (contract FA8650-20-2-7006). The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Government.

