LISA WU WILLS, DUKE UNIVERSITY

GENESIS: A COMPOSABLE HARDWARE ACCELERATION FRAMEWORK FOR <u>GENOME</u> ANALYSIS

My Research Goal #1: **Design and deploy highly efficient domain-specific hardware accelerators to advance stateof-the-art emerging applications.**

My Research Goal #2: Democratize end-to-end accelerated system development and deployment while leveraging hardware acceleration to advance emerging application domains in the interdisciplinary area of computer architecture and healthcare.

FPGA ACCELERATED INDEL REALIGNMENT IN THE CLOUD [HPCA 2019] Werkeley

LISA WU, DAVID BRUNS-SMITH, FRANK NOTHAFT, QIJING HUANG, SAGAR KARANDIKAR, HOWARD MAO, BRENDAN SWEENEY, KRSTÉ ASANOVIC, DAVID PATTERSON, AND ANTHONY JOSEPH

GENESIS: A HARDWARE ACCELERATION FRAMEWORK FOR GENOMIC DATA ANALYSIS [ISCA 2020, IEEE MICRO TOP PICK

TAE JUN HAM, DAVID BRUNS-SMITH, BRENDAN SWEENEY, YEJIN LEE, SEONG HOON SEO, U GYEONG SONG, YOUNG H OH, KRSTÉ ASANOVIC, JAE W LEE, AND LISA WU WILLS

GOAL OF GENOMIC ANALYSIS:

Identify the nucleotide differences (or variants between an individual genome and the reference genome at a given position, with acceptable accuracy.

ADEPT-EOP-Wills

ALIGNMENT REFINEMENT IS THE SLOWEST PIPELINE

Berkeley Architecture Research

WHAT DOES DATABASE ANALYTICS AND GENOMIC **ANALYSIS HAVE IN COMMON?**

Generic Data Manipulations (i.e. aggregation, sorting)!

- Domain-Specific Language: SQL+

-Ò- Genomic Hardware Library

- Accelerator Composer

Accelerator Composer Design Templates

OUR ACCELERATED IR SYSTEM PERFORMS 81X Better than software running 8 threads

42 hours —> roughly 30 minutes

Berkeley Architecture Research

IMPACTS/SIGNIFICANCE

ACCELERATING COMMON PRIMITIVES ACROSS Domains allows the sharing, reusing, and composition of accelerated systems across domains, lowering development effort.

ADEPT-EOP-Wills

IMPACTS/SIGNIFICANCE

LEVERAGE AN ALREADY-STANDARDIZED LANGUAGE AS THE DSL AND CONSTRUCT PRIMITIVE OPERATORS THAT DIRECTLY MAP SOFTWARE PRIMITIVES TO HARDWARE BLOCKS PRODUCES EFFICIENT ACCELERATED SYSTEMS.

ADEPT-EOP-Wills

IMPACTS/SIGNIFICANCE

THIS DEVELOPMENT METHODOLOGY CAN BE Adopted for various domains beyond database and genomic analytics.

