Hammer VLSI Flow

Palmer Dabbelt, Edward Wang, John Wright, Colin Schmidit,
Harrison Liew, Daniel Grubb, and many others,
Borivoje Nikoli¢, Krste Asanovi¢, Jonathan Bachrach

Berkeley
Archltectu re
Research

CHIPYARD

Motivation: “Advertised” VLS| Flows

s
C..
/

.o,

Place-
Logic Gates and-
Route

Logic
Design

Verilog

Berkeley Architecture Research 5

Motivation: “Advertised” VLS| Flows

Berkeley Architecture Research s

Motivation: Real VLSI Flows

RTL is ready

Power strap spec
doesn't meet DRC,
causes LVS problems

Fix power straps;
Discover some
standard cells have
DRC problems when
abutted

Foundry delivers PDK
tarball

Finally start place-
and-route

Fix DRC problems;

continue with place-

and-route; discover

the design misses
timing

@ Berkeley Architecture Research

Unzip PDK. Slowly

discover there are

missing CAD-tool-
specific files

Iterate on synthesis
for a week

Spend a while fixing a
timing path in the
RTL, while noting

what went wrong with

the tool

Send a few emails to
the foundry

Find out you are
using the wrong time
units and standard
cell library

Fix timing paths; tape
out a chip

Download a new PDK

Try running synthesis

Switch to a new
foundry and CAD
vendor; throw all this
work away

Motivation: Real VLS| Flows '$

* Problem: VLSI flows must be rebuilt for each project

* Overhead compounded by

* Changing CAD tools
« Commands / features change
* File formats / library locations
* New process technology
« SRAMs (compiled/pre-generated?)
* DRC rules
* Different design
 Floorplanning / power / clock

Tool
Concerns

Process
Technology
Concerns

Non-reusable Tcl script
@ Berkeley Architecture Research 5

Solution: Hammer '%&

. Goal: generate modular, reusable VLSI flows

. Philosophy:
» Incremental Adoption
- Users: reuse what you can, hack what you can’t

» System Evolution
- Devs: generalize hacks for future users

- Modularity + Abstraction = Clarity
. Separate concerns, standardize data exchange

@ Berkeley Architecture Research 6

Features (e.g. floorplanning, I/O cells,
voltage domains, hierarchical P&R)

Incremental Adoption \

" : : /Incremental Adoption
(Traditional Physical Designers)

(Expert Physical Designers)

as s

System Evolution . o Incremental Adoption
(Software Engineers) . 4 © (Novice Physical Designers)

Using modularity and abstractions, HAMMER is designed to support
incremental adoption and system evolution.

@ Berkeley Architecture Research !

Hammer Design Philosophy i}%

e Separation of Concerns

- 3 input categories: Tool:
1. Design-specific * In/out files
2. Tool/Vendor-specific « Tclcode
3. Technology-specific « Tech. file
formats

e« Hammer IR

e Standard YAML/JSON input &
data exchange format
« Metaprogramming: modifiable attributes

« Modular tech & tool plugins
» Default settings, flow steps, helper methods
* Interchangeable + extensible = reusable!

@ Berkeley Architecture Research

Software Architecture

RTL-Intimate Pure RTL
Physical Concerns
Design . , , :
Concerns Physical DfSIgﬂ DSLs Chisel linmpller
FIRRTL Compiler
-— 2
 Tech-Mapped Verilog | | Hammer IR

————

Flow Concerns Hammer Driver

/\

CAD Tool/Vendor | Hammer Tool Lib

Concerns /‘\

Hammer Tech Lib

:

@ Berkeley Architecture Research

Synthesis Tool Plugin Place&Route Tool Plugin Technology Plugin
v v Technology
syn.tcl par.tcl Concerns

Legend

Compilers/Libraries/Frameworks

Generated Files

Re-usable Hammer Plugin

History of Hammer

N

Palmer Dabbelt’'s PLSI

-~

Make-based
Stringly-typed
JSON dictionaries
Not reused

¥

Edward Wang’'s MS Thesis

J

~

Re-architected
Strongly-typed
Clear abstractions
EAGLEs (TSMC 16)

Tapeout class (ST 28)

Published: [SQED ‘20/

_

UCB-BAR project + Chipyard integration

Many more devs
Documentation

New plugins & features

o RTL/gate-level simulation
DRC/LVS

Power, EM/IR analysis
SRAM, PCB collateral
APIs: power straps,
bumps, pins, floorplan

Projects/Classes Technology

O
O
O
O

Hydra, BEAGLE, PRIDE Intel 22
ARGO (RTML) GF 12
151/251A, 241B ASAP 7

290C (tapeout), HDC TSMC 28

Oski Bear Skywater 130

/

@ Berkeley Architecture Research

10

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-77.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-28.html
https://ieeexplore.ieee.org/abstract/document/9136999
github.com/ucb-bar/hammer
github.com/ucb-bar/chipyard/tree/master/vlsi
http://docs.hammer-eda.org/en/latest/

Current State + Future of Hammer 'i\;}

 Hammer is for everyone! * What we're planning:
« Tape out in many process techs « Metrics parsing, constraints feedback
 Arch. DSE with open-source techs « OpenROAD plugins
* Reusabillity regardless of design « LEC, characterization plugins

» Current key features: » Aspect-oriented Chisel floorplanning
- Bottom-up hierarchical * Abutment/partition-based hierarchical
« SRAM library compilation « True multi-clock/power domain gen.
- Many APIs: e.g., power straps * Cloud compute, ClI, IR validity checks
* Floorplan visualization Hammer users are also developers!
 User & tech hooks (i.e., hacks) — driven by projects + tapeouts

@ Berkeley Architecture Research 11

Leanvore T

 Github: https://github.com/ucb-bar/hammer/
« Documentation: https://nhammer-visi.readthedocs.io/

» Chipyard-specific documentation:
https://chipyard.readthedocs.io/en/dev/VLSI/index.html

« User mailing list: hammer-users@googlegroups.com

 Plugin access requests: hammer-plugins-access@lists.berkeley.edu
« Cadence, Synopsys, and Mentor

@ Berkeley Architecture Research

https://github.com/ucb-bar/hammer/
https://hammer-vlsi.readthedocs.io/
https://chipyard.readthedocs.io/en/dev/VLSI/index.html
mailto:hammer-users@googlegroups.com
mailto:hammer-plugins-access@lists.berkeley.edu
github.com/ucb-bar/hammer-cadence-plugins
github.com/ucb-bar/hammer-synopsys-plugins
github.com/ucb-bar/hammer-mentor-plugins

