Algorithms and Systems for
Scheduling Structured Programs

Grace Dinh ()
ADEPT End-of-Lab Talk

09 December 2021

mailto://(null)dinh@berkeley.edu

Background

End of Moore's law = Accelerators increasingly ubiquitous in both edge and datacenter

Accelerators expanding beyond ML for performance-critical applications, due to
plateauing performance from general-purpose chips and falling design costs for
specialized chips

- Protobuf accelerator (Sagar’s talk earlier today)

- Cryptocurrency mining: “ASICs are the standard technology found in every large-scale facility”

- Google VCU: specialized hardware for video encoding - “20-33x improved efficiency over our
prior well-tuned non-accelerated baseline™

- F1: hardware accelerators for fully homomorphic encryption® - “accelerating full FHE
computations by over 3-4 orders of magnitude”, making it actually practical for real world apps

https://spectrum.ieee.org/why-the-biggest-bitcoin-mines-are-in-china
https://dl.acm.org/doi/abs/10.1145/3445814.3446723
https://arxiv.org/abs/2109.05371

Background

Software/algorithms play a huge role in performance on accelerators, and still lots of
room for improvement.

“the actual performance of new ML-optimized
hardware often lags far behind the promise... ML
engineers may spend their
models to try to take advantage of what a new
hardware target offers.” - from OctoML, which
beat Apple’'s CoreML performance on Apple M1
by 50% under two months after its release*

Cost breakdown of developing new chips. Source: IBS [4]

https://octoml.ai/blog/on-the-apple-m1-beating-apple-s-core-ml-4-with-50-model-performance-improvements/

Dealing with Generality

Many algorithms (in multiple sizes!) and many accelerators (also in multiple sizes - GEMMINI
(next talk) programmatically generates accelerators).

Manual optimization too labor-intensive.
Tuning often expensive (esp. benchmarking performance on simulators - ~5min/run)

Our approach: develop model for performance, cast scheduling as numerical optimization,
and solve. Often can get strong lower bounds in the model.

Hardware Speed Trends

Don't Communicate @

Algorithms have two costs (measured in time or energy).

(FLOPS), and - moving data
between
- |eve|s Of d memory hlerarChy (Serlal case - Above: latencies for flops (gamma) vs. communication over time
accelerator SCI’atChpad to CaChe, On/Off Chlp Below: energy consumption of NN. Arithmetic (ALU) cost is tiny.
memory)

- processors over a network (parallel case - also
encapsulates on-chip communication, e.g. systolic
array traffic).

Normalized Energy

Goal: minimize communication by rearranging program,
without changing what it does

HBL T

INg

for (i1,i2,...,ik) in SC Z*:
Access array locations indexed by affine function of indices, eg ¢,
(i1,i2,....1k) = (i1+2*{3-i7)

Theorem [Christ et al. 13]: for any reordering, #words moved > ((/S| /M),
for some problem-dependent e

Above: “twisted parallelepiped” tile
Below: communication cost of matmul tiled with DD20 vs.

Theorem [Demmel-Rusciano ‘16]: if loop bounds large enough, exists algorithm-specific optimized algorithm (CARMA)

[No Blocking
@ Blocked, Equal Alloc

M Blocked, Nonlinear Opt
B CARMA

optimal tiling algorithm (right, top) to attain this bound.

Theorem [D. - Demmel SPAA "20]: For loops subscripts only dependent on
one index (¢ projective, “looks like dense linear algebra”): lower bound
attainable by efficiently computable tile regardless of problem size (i.e.
including small dimensions, e.g. “inner product” like computations)

|

1Kx1Kx104 1Kx1Kx64 1Kx1Kx32 1Kx1Kx1

dimension

For specific algorithms

For matmul: variable-aspect ratio tilings (Vivek's preceding talk)
For convolutions:

- [Demmel-D. MDS 20]: tight, asymptotic
lower bound for convolutions.
- Computer generated proof, automatic code generation of tiling
attaining the lower bound for all cases
- Implication: well-tiled direct conv more
communication-efficient than im2col, regardless of
optimizations applied to latter.
- [CDDHH, under submission] - tighten communication bounds
including constant factors and for parallel machines

Cache misses, 2D conv, Squeezenet, convl

- Standard Convolution

Communication-Avoiding Matrix Multiplication

- Communication-Avoiding Convolution

2K 4K 8K 16K 32K 64K 128K 256K 512K
Cache size
(words)

Making Models More Realistic

No lower bounds, but more closely matches real architectures

[HKDKDWS ISCA 21]: recast tiling, loop ordering (dataflow), and parallelization as constrained optimization
problem (easily solvable with Gurobi/cvxpy). ~50% speedup, ~20% energy efficiency improvement w/90x
faster time-to-solution vs. tuning

~
o

Random %®® Timeloop Hybrid u®® CoSA
5.2

Random 4 Timeloop Hybrid wWwn CoSA

IS
<]
<]

5%
X3
o2o%e

KX
ks 3.3
oo

0% 27
s 27

w
%
5%
XK
o2e%2

2
2L
2

3
o205

6
5
4
3

N
KK
SEEE
R0
BB
252K,

”W%ig
3255
Sietetel

&%
o262
<

N

-
2
O

S

Lo

o
%

T >
g 2]
8 S
© 2
5 wi
= c
£ S
$ £
= 7}
kt

o, £
= $
3 o
T -
] S
& E

o -
o
0%
S

S

Modeled cache misses
for a simulated NN vs.
cache sizes (lower
better). Colors indicate
layers per block

A BERT computation
graph:

(image source:

https://octoml.ai/blog/on-the-apple-m1-beating-apple-s-core-ml-4-with-50-model-performance-improvements/
https://octoml.ai/blog/on-the-apple-m1-beating-apple-s-core-ml-4-with-50-model-performance-improvements/
https://octoml.ai/blog/on-the-apple-m1-beating-apple-s-core-ml-4-with-50-model-performance-improvements/

In practice...?

User-schedulable language: Given basic kernel and
user-supplied scheduling instructions, generate optimized
code. (more to come in ~20 minutes, at Gilbert's SysTL talk)

To generate high-level scheduling code: metaprogramming
layer called MoST (Modular Schedule Transforms). Schedule
objects represent “high-level” transforms (“block this loop
with specified params”)

Algorithms from previous slides implemented as generator
functions that generate MoST objects.

ey
> ®®

H WEBOXETZu o0
H
w
N
—
=

u
: £32IN, K
1
1A

or i in par(e, N):
for j in par(e, M):
for k in par(e, K):
cli, j1 += A[i, k] = B[k,

T h a ﬂ kS]CO r Questions? Ask on Slack or in person at

4pm, or email gnd@berkeley.edu

watching!

