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Motivation
* Dense matrix-matrix multiplication (GEMM) is an intensely studied kernel. We have:

— Shared Memory GEMM algorithms minimizing memory-to-processor communication
through cache-aware tiling

—  Distributed Memory GEMM algorithms minimizing processor-to-processor
communication (Cannon, SUMMA)

— Accelerators optimized for GEMM computations (GPU, Google TPU, GEMMINI
systolic array...)

* For the past three semesters, we've looked at GEMM-like operations where the input

arguments have unequal access costs, both in distributed and shared memory. We
summarize the work here.
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Communication Avoiding SDDMM, FusedMM Operators

In review at IPDPS 2022
SpMMA(S, B) := S - B
Sparse-Dense matrix multiplication (SpMM)

and Sampled Dense-Dense Matrix SDDMM(A, B, S) := S * (A- B")
multiplication (SDDMM) are key
computational kernels in graph learning,
scientific computing operations
T.0) e (V) SDDMM
- For graphs, SDDMM is key kernel for (T, W)
message generation, SpMM is key for

message aggregation N

* Extensive existing work on shared memory
optimization for both kernels and SpMM E\%TUIZ)
distributed-memory SpMM operations +W(’1’", w)
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Communication Avoiding SDDMM, FusedMM Operators

In review at IPDPS 2022
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Communication Avoiding SDDMM, FusedMM Operators

In review at IPDPS 2022

amazon-large.mtx Strong Scaling of 2.5D Algorithms on amazon-large.mtx

~#~ 2.5D Sparse Replicating
—&— 2.5D Dense Replicating Fused
—&— 2.5D Dense Replicating Unfused

e  Experiments ran on 256 Knights Landing
Cores on Cori, a Cray XC40 at LBNL

e Combining the SDDMM and SpMM

Time for 5 FusedMM Invocations (s)
Time for 5 FusedMM Invocations (s)
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. g . . . g 1.5D Unfused 10*
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Dense-Times-Random, Mixed Precision MatMul

Work in Progress

* Now consider computations of the form C = A - B, where A, B are m x k, k x n dense
matrices and A is either:
— Random i.i.d. (e.g. sketching operations in randomized linear algebra)

— Lower precision than B or C (mixed-precision neural network training

« If Aisi.i.d. random, suppose that it costs less to regenerate entries of A in registers than to
load it from memory (assume a single level of caching for now)

* Could generate the random matrix and dispatch a GEMM cal for either problem. Can we
take advantage of the unequal access cost of the two inputs?
— In theory: yes!
— In practice: working on it...
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Weakened Memory Lower Bounds

Work in Progress

 Let M be the number of data words in the cache that either B or C can hold. Standard
GEMM has a data movement lower bound:

mnk

VM

« If loading words of A costs 0 < ¢ < 1 time compared to loading words of B or C, the lower
bound weakens to:

2

+ Q(lower order terms...)

k
Q (mn ﬁ) + Q(lower order terms...)
VM
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Tiling to Meet Lower Bounds
Work in Progress
« Specially tuned cache tiling shape for GEMM allows us to meet the lower bound in theory

* In practice: Hardware-accelerated RNG required to get performance fast enough to take
advantage of tiling, need hardware support for mixed-precision matrix multiplication

«  We are continuing to develop theory and experiments for unequal access cost GEMM

M/z Stream Stream

Z Stationary
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