
Chipyard

Trends in Open Source Hardware

2

• Organization/Specifications: RISC-V, CHIPS Alliance, OpenHW

• Community: LowRISC, FOSSi

• Academia: PULP Platform, OpenPiton, ESP

• Government: DARPA POSH

• Industry: WD SWERVE, NVIDIA NVDLA

• Tools: Verilator, Yosys, OpenRoad

• Fabrication: Skywater 130nm

Building An Open Source RISC-V System

3

Have you heard of this Free and

Open RISC-V thing? It should be

so easy to build real systems now
Cool! I want to build an

Open-Source custom

RISC-V SoC.

What do I need to do?

I think I heard of some stuff from

Berkeley (Rocketchip? Chisel?),

also OpenPiton, and PULP

Building An Open Source RISC-V System

• Processor core IP

• Supporting system IP (memory system, peripherals, buses, etc.)

• Integrate custom blocks

• Write appropriate software

• Verify using bare-metal simulation

• Validate full-system

• Physical design

• Test environment

• Fabrication

4

Chipyard – The Real Story

5

Man… I’ve been here for 3 years,

and I still can’t figure out how all

these chisel- and rocketchip-based

project work together.

Whenever I need to build anything

(hardware, software, sim) I just

use the firesim infrastructure

I know!!! I just started this year, an

d I’m already a BOOM maintainer.

We totally depends on interactions

and interfaces with a gazillion

other repos and projects that are

never synced

Chipyard – The Real Story

6

We’re doing an ADEPT

“offsite” in a place far

far away…. The I-House.

Everyone should bring

topics to talk about

Chipyard – The Real Story

7

Brainstorming for I-House event!

What should we talk about?

I want to complain about

compilers and build systems!

That’s nice, but….

You know, we have all these

cool projects that we use to

build chips, but nobody else

knows they work together.

We need some kind of joint

landing page or website!

Classic

Chipyard – The Real Story

8

Yup, that makes sense

Totally

Agreed

Maybe we should do

something about it?

Chipyard – The Real Story

We hereby convene the great

REBAR council in Soda 511.

Please join!

(Warning – you will be

micro-managed to pieces)

Chipyard – The Real Story

First order of business:

We hate the name REBAR

(but also, mono-repo vs. individual

independent modules)

Goal:

Make it easy for small teams to
design, integrate, simulate, and tape-out a custom SoC

11

Chisel

FIRRTL

RISC-V

Rocket Core

BOOM Core

TileLink

Accelerators

Caches

Peripherals

Diplomacy

Configuration

System

FireSim

HAMMER

FPGA-shells

Building An Open Source RISC-V System

A lot of RISC-V & generator-related open source hardware projects out there

FireMarshal

Chipyard

Chipyard

Tooling

Chisel

FIRRTL

RISC-V

Rocket Chip

Generators

Rocket Core BOOM Core

TileLinkAccelerators

Caches Peripherals

Diplomacy

Configuration

System

Flows

FireSim

HAMMER

Software RTL

Simulation

12

FPGA-shellsFireMarshal

Verilog IP

How is this integrated? Generators!

13

How is this integrated? Generators!

14

• Everything starts from a
generator configuration

• Generators written in Chisel

• Generator SoC basic component
libraries (enable integration)

• Rocket Chip
• Diplomacy

• Higher level generator libraries:
BOOM, Inclusive Cache, SiFive
Blocks, Accel.

• Generators can integrate third-
party Verilog instance IP

• Generators lead from IP to
design flows

How is this integrated? Generators!

15

• Elaboration and
Transformation

• Internals: FIRRTL – IR
enables automated
manipulation of the
hardware description

• Externals: I/O and Harness
Binders – pluggable
interface functions enable
automated targeting of
different external interface
requirements

How is this integrated? Generators!

16

• Design flows
• Software RTL Simulation

• FPGA-Accelerated Emulation

• FPGA Prototyping

• VLSI Implementation

• Makefile based automation
of transition between
design flows

• Flow-specific collateral
generation (harnesses,
drivers, configuration and
constraint files, etc.)

Software

• Hardware alone is not enough

• Custom SoCs require custom
software

• Different platforms require
different firmware

• Chipyard codifies custom
software handling

• Toolchains

• Reproducible software
generation and management
flows using FireMarshal

Chipyard Goals

Beginner
Friendly

Multi-
purpose

Community-
friendly

Research-
friendly

Education-
friendly

Multipurpose
ChipHarness

ChipTop

DigitalTop

IO
C

e
ll

IO
C

e
ll

IO
C

e
ll

IO
C

e
ll

A
n

a
lo

g

S
e

rd
e

s

P
L

L

FMC

Host FPGA

FireSimHarness

ChipTop

DigitalTop

A
X

I4
B

rid
g
e

U
A

R
T

B
rid

g
e

G
P

IO
T

ie

J
T
A

G
T

ie

TestHarness

ChipTop

DigitalTop

D
R

A
M

S
im

.c
c

S
im

U
A

R
T
.c

c

S
im

G
P

IO
s
.c

c

S
im

J
T
A

G
.c

c

S
im

S
e

ria
l.c

c

T
e

s
tD

riv
e

r.v

S
e

ria
lB

rid
g
e

C
lo

c
k
B

rid
g
e

FASED
Host

UART

Host

Serial

Clock

Driver

Digital System configuration

Chip IO configuration

Harness Configuration

A Complete Config
class CustomConfig extends Config(
new WithDefaultGemmini ++
new WithNRocketCores(1) ++
new WithNBoomCores(1) ++
new WithBootROM ++
new WithUART ++
new WithJtagDTM ++
new WithGPIOs ++
new WithInclusiveCache(512) ++

new WithPassThroughIOs ++

new WithDRAMSim ++
new WithSimUART ++
new WithSimJTAG ++
new WithSimSerial

)

TestHarness

ChipTop

DigitalTop

D
R

A
M

S
im

.c
c

S
im

U
A

R
T
.c

c

S
im

G
P

IO
s
.c

c

S
im

J
T
A

G
.c

c

S
im

S
e

ria
l.c

c

T
e

s
tD

riv
e

r.v

Digital

System

Chip IO

Harness

Education

Used in multiple Berkeley grad/ugrad courses

• Hardware for Machine Learning

• Undergraduate Computer Architecture

• Graduate Computer Architecture

• Advanced Digital ICs

• Tapeout HW design course

Common shared HW framework

• Reduced ramp-up time for students

• Students learn framework once, reuse it in

later courses

• Enables more advanced course projects

(tapeout a chip in 1 semester)

22

Chipyard Learning Curve

Exploratory-level

• Configure a custom SoC from pre-existing com

ponents

• Generate RTL, and simulate it in RTL level sim

ulation

• Evaluate existing RISC-V designs

Evaluation-level

• Integrate or develop custom hardware IP into

Chipyard

• Run FireSim FPGA-accelerated simulations

• Push a design through the Hammer VLSI flow

• Build your own system

Advanced-level

• Configure custom IO/clocking setups

• Develop custom FireSim extensions

• Integrate and tape-out a complete SoC

Community

Documentation:

• https://chipyard.readthedocs.io/en/dev/

• 133 pages

• Most of today’s tutorial content is covered
there

Mailing List:

• google.com/forum/#!forum/chipyard

Open-sourced:

• All code is hosted on GitHub

• Issues, feature-requests, PRs are
welcomed

24

https://chipyard.readthedocs.io/en/dev/
https://groups.google.com/forum/#!forum/chipyard

Summary

• Integrated design, simulation
and implementation
framework

• Converging the various flows

• Feature prioritization based
on test chip development
experience

• Tighter project integration as
lessons from increasingly
complex test chips

• Userbase is growing

