CRAFT

Circuit Realization At Faster Timescales

Stevo Bailey and Paul Rigge

Craft Phase 1 - Agile Development of DSP Chips

Agile Software Design

Agile Software Design

Waterfall development:

Agile Chip Design

Need methodologies and flows for:

- Scalable, parameterized design generators
- Rapid design turn-around
- Aggressive re-use
- Agile verification and validation

Capturing Design Knowledge

DSP Chip Methodology

• DSP Chain composition (automatic Xbar sizing)

System Design Methodology

DSP Generators

- Programmatic CSR memory interface generation
- IPXact generation for verification
- C header with memory mapping, convenience functions, etc.
- Test harnesses
 - Chisel, Verification Workbench, and C tests!

Verification

Bin

BAG ADC Generator

• "ADC" generator includes:

- Asynchronous SAR sub-ADCs
- Resistor-ladder DACs for bias & offset
- High-speed clock RX
- S/H, phase generation circuits with skew correction
- Custom digital retimer
- Generator parameters:
 - Number of bits, redundancy
 - Interleaving factor
 - C-DAC thermal noise spec.
 - Comparator noise and sample-rate spec.

Example Layouts in 16nm

Comparator

SAR ADC

Switch-Cap DAC

R-ladder DAC

Time-Interleaved SAR ADC

SerDes RX Front-End

Radar Chip Specs

Chip Highlights:

- 64-bit RISC-V processor
- 4-lane Hwacha vector unit
- DMA for DSP data movement acceleration
- 512 kB L2 cache
- 8 MB backing SRAM main memory
- 300 MHz DSP and core
- Custom IP integration (UART)
- JTAG backup controller
- Two verified AXI4 crossbars, 2x12 and 2x7
- Built-in debugging with 512 kB Logic Analyzer and 512 kB Pattern Generator
- 8-bit, 10 GHz time-interleaved SAR ADC with calibration
- Programmable digital tuner
- 136-tap programmable FIR filter
- 12-tap polyphase filter bank (PFB) with fixed coefficients
- 128-point FFT
- 5 stream-to-AXI4 memories (SAM) ranging in size from 64 kB to 256 kB
- Joint effort with Northrup Grumman Corporation (NGC) and Cadence Design Systems

Radar Chip Layout

Agile Methodology

Tape-In

Agile Methodology

Signal Analysis SoC

~14,000 eng. hours

Annotated Layout

Die Photo

Technology	16nm FinFET	
Die Area	5mm x 5mm (25mm ²)	
	General-Purpose Processor	Signal-Analysis Processor
Area	1.1 mm ² (gates) 9.2 mm ² (SRAM)	1.5 mm ² (gates) 0.8mm ² (SRAM)
Total SRAM Size	71 Mbits	14 Mbits
Voltage	0.56 V - 0.98 V	0.56 V - 0.98 V
Max Frequency	410 MHz	417 MHz
Power	349 mW @ 0.75V, 410 MHz	210 mW @ 0.75 V, 417 MHz
Max Throughput (Mspectra/s)	0.46 (vector) 0.004 (scalar) @ 410 MHz	13 @ 417 MHz
Efficiency	23.4 GFLOPS/W (0.56V, 191MHz) (DGEMM on vector accelerator)	19.2 TOPS/W (0.56V, 192MHz) (1 op = 8-bit add ~ 17-bit mul)

Sparse FFT

~3,000 eng. hours

Summary and Lessons Learned

- Summary
 - Agile chip development is possible
 - We created a generalized DSP chip development methodology
 - We used this methodology to quickly realize multiple chips
- Lessons Learned
 - Stay flexible
 - Automate and version control
 - Design for reuse
 - Physical design was the bottleneck

Angie Wang

DSPTools for Building & Verifying Hardware FFT Generators

FFTs Are Everywhere!

Hardware FFTs implemented countless times...

Core DSP in

- Radio Astronomy
- Audio Signal Processing
- MRI
- Cognitive Radio / SDR 5G+
 - LTE, Wi-Fi, Future Standards
 - Dynamic Spectrum Mgmt.
 - Object Detection
 - ... You name it!

Case Study: Wireless Communication

How to generate a *hardware-optimized* building block for different standards?

Performance

One-off designs (runtime reconfigurable or otherwise) not resource + time-efficient!

Mixed Radix, Runtime Reconfigurable FFT Generator

Scala "Firmware"

Calculates constants for LUT generation

User Input:

{Supported Rad}

Calculates optimized hardware params

Chisel Hardware Template

- LUTs for reconfiguration + twiddles
- Configurable blocks controlling dataflow between IO, SRAMs, & PE(s)
- Design complexity mostly in ctrl logic

A 0.37-mm² LTE/Wi-Fi Compatible FFT Accelerator Integrated with a RISC-V Core in 16-nm FinFET

- Taped out in ~1 month from PDK delivery, with comparable performance to state-of-the-art
- Auto-generate C tests and run on Rocket-Chip

A Real-Time, 1.89-GHz Bandwidth, 175-kHz Resolution Sparse Spectral Analysis RISC-V SoC in 16-nm FinFET

- ADCs modeled in Chisel, designed with BAG
- Mixed-radix FFTs + peeling reconstruction backend designed with Chisel

A Real-Time, 1.89-GHz Bandwidth, 175-kHz Resolution Sparse Spectral Analysis RISC-V SoC in 16-nm FinFET

 Chisel/BAG generators enabled the first automatically generated, fully-integrated, sparse spectral analysis SoC, completed in ~2 months

A Chisel Environment for DSP Generator Design

- Capture and propagate designer intent down the hardware abstraction hierarchy without redundant specification!
- Powerful meta-programming with zero-cost abstractions
 - Operator + data type parameterization
- Unobtrusive optimization and specialization
 - Automatic bitwidth reduction via static or simulation-based interval analysis
- Unified, yet portable modeling, validation, verification, and testing

Systems Modeling/Verification + Validation

- DspReal for verifying mathematical correctness/decoupling algorithmic errors from degraded performance due to quantization errors
 - Effective # of ADC bits
 - Fixed-point error propagation in the FFT, etc.
- Study system sensitivity to block performance via metrics like SER

• Use the same tests across all layers of the design stack to catch bugs

Summary

- The ACED DSP (aka DSPTools) library builds upon the Chisel ecosystem and vision.
- It operates at several *distinct* levels of abstraction.
 - High-level type-generic generators
 - Low-level bitwidth optimizations
- Tried-and-true techniques are brought immediately into the hands of the designer.
- Bitwidth optimization illustrates a powerful use case of FIRRTL's open-compiler framework in the context of writing DSP generators.
- Several chips have been fabricated using ACED