
Appears in the Proceedings of the 45th ACM/IEEE International Symposium on Computer Architecture (c© 2018 IEEE)

A Hardware Accelerator for Tracing Garbage Collection

Martin Maas?, Krste Asanović, John Kubiatowicz
University of California, Berkeley

{maas,krste,kubitron}@eecs.berkeley.edu

Abstract—A large number of workloads are written in
garbage-collected languages. These applications spend up to 10-
35% of their CPU cycles on GC, and these numbers increase
further for pause-free concurrent collectors. As this amounts
to a significant fraction of resources in scenarios ranging from
data centers to mobile devices, reducing the cost of GC would
improve the efficiency of a wide range of workloads.

We propose to decrease these overheads by moving GC into a
small hardware accelerator that is located close to the memory
controller and performs GC more efficiently than a CPU. We
first show a general design of such a GC accelerator and
describe how it can be integrated into both stop-the-world and
pause-free garbage collectors. We then demonstrate an end-to-
end RTL prototype of this design, integrated into a RocketChip
RISC-V System-on-Chip (SoC) executing full Java benchmarks
within JikesRVM running under Linux on FPGAs.

Our prototype performs the mark phase of a tracing GC at
4.2x the performance of an in-order CPU, at just 18.5% the
area (an amount equivalent to 64KB of SRAM). By prototyping
our design in a real system, we show that our accelerator can
be adopted without invasive changes to the SoC, and estimate
its performance, area and energy.

Keywords-hardware accelerators; garbage collection; SoCs;
language runtime systems; memory management;

I. INTRODUCTION

A large fraction of workloads are written in managed
languages such as Java, Python or C#. This includes server
workloads in data centers, web applications in browsers, and
client workloads on desktops or mobile devices. Garbage
collection (GC) has been a challenge in these environments
for a long time [1], [2]. On one hand, GC pauses cause
applications to stop unpredictably, which results in long tail-
latencies, stragglers and GUI glitches. On the other hand,
GC is a substantial source of energy consumption: previous
work has shown that applications spend up to 38% of their
time in garbage collection, and that GC can account for up
to 25% of total energy consumed (10% on average [3]).

It is therefore unsurprising that there has been a large
amount of research on GC for the past 50 years [4]. Yet,
despite a lot of progress, we have arguably still not come
close to an ideal garbage collector. Such a collector would
achieve full application throughput, support high allocation
rates, introduce no GC pauses and would be efficient in terms
of resource utilization (particularly energy consumption).

Instead, all existing collectors have to trade off three
fundamental goals: (1) high application throughput, (2)

? Now at Google Brain (Contact: mmaas@google.com)

high memory utilization, and (3) short GC pauses. Existing
collectors can perform well on any two of these goals, at
the cost of the third: Stop-the-world collectors introduce
pauses but achieve high application throughput and memory
utilization by stopping all threads and completing GC as
quickly as possible on all cores of the machine. Concurrent
collectors perform GC without pausing the application but
lower application throughput since they must synchronize
the application with the collector and utilize CPU cores for
GC. Finally, avoiding GC altogether neither incurs pauses
nor application slow-down but wastes memory.

Most collectors fall into none of these extreme points and
instead strive to balance the three metrics. However, while
they can shift work between different parts of the execution
(e.g., perform GC interwoven with the application rather than
during pauses), the work itself remains the same.

In this paper, we argue that we can build a collector that
fundamentally improves these metrics by moving GC into
hardware. While the idea of a hardware-assisted GC is not
new [5]–[8], none of these approaches have been widely
adopted. We believe there are three reasons:

1) Moore’s Law: Most work on hardware-assisted GC
was done in the 1990s and 2000s when Moore’s Law
meant that next-generation general-purpose processors
would typically outperform specialized chips for lan-
guages such as Java [9], even on the workloads they
were designed for. This gave a substantial edge to
non-specialized processors. However, with the end
of Moore’s Law, there is now a renewed interest in
accelerators for common workloads.

2) Server Setting: The workloads that would have
benefitted the most from hardware-assisted garbage
collection were server workloads with large heaps.
These workloads typically run in data centers, which
are cost-sensitive and, for a long time, were built from
commodity components. This approach is changing,
with an increasing amount of custom hardware in data
centers, including custom silicon (such as Google’s
Tensor Processing Unit [10]).

3) Invasiveness: Most hardware-assisted GC designs
were invasive and required re-architecting the memory
system [8], [11]. However, modern accelerators (such
as those in mobile SoCs) are typically integrated as
memory-mapped devices, without invasive changes.

1

avrora luindex lusearch pmd sunflow xalan
Benchmark

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
 C

P
U

 T
im

e

GC
Not GC

(a) CPU Time spent in GC

10 100 1000
Query Latency in ms

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
 o

f Q
ue

ry
 L

at
en

ci
es

(b) Query latencies in Lucene

Figure 1: Applications spend up to 35% of time in GC pauses, and
GC causes long tail latencies. Fig. (b) shows the query latencies in the
lusearch benchmark processing 10 QPS. The long tail (note the log scale) is
the result of GC; the colors indicate whether a query was close to a pause.

We believe that for these reasons, the time is ripe to revisit the
idea of a hardware-assisted garbage collector, to build a GC
that can be pause-free, achieves high application throughput,
high memory utilization, and is resource efficient.

This work takes a step in this direction. We present a
hardware accelerator close to memory that is integrated into
an SoC and performs garbage collection more efficiently than
a CPU would, lowering GC’s energy and performance impact.
The accelerator is standalone but can be combined with light-
weight changes to the CPU that reduce the cost of using
the unit in a concurrent GC (by removing communication
between CPU and GC from the execution’s critical path and
allowing the CPU to speculate over these interactions).

We first present our design in the most general form and
describe possible incarnations. We then present an end-to-
end prototype implemented in RTL that is integrated into a
full SoC design and co-designed with modifications to the
JikesRVM Java VM running on Linux. Executing this full
hardware and software stack within FPGA-based simulation,
we evaluate the design trade-offs of our accelerator, char-
acterize its workload, and demonstrate that it can perform
Mark & Sweep garbage collection 3.3× as fast as an in-order
CPU, at 18.5% the on-chip area consumption. We also show
that with a faster memory system, those speed-ups increase
to 9.0× over the CPU for the tracing portion of the GC.

While the design is general, our prototype is integrated into
a RISC-V RocketChip SoC. RocketChip is an open-source
SoC generator that can target both FPGA and VLSI flows
and has been used in commercial ASIC designs. Through this
integration, we show that our accelerator is non-invasive and
works efficiently within an existing SoC, running complete
Java workloads, including DaCapo benchmarks.

We first present an example to demonstrate the problems
arising from GC (Section II). We then give an overview
on GC and describe the trade-offs of existing algorithms
(Section III). Next, we present a general form of our collector
design, describe its design space and introduce optional
CPU modifications aimed at reducing the overheads of
performing GC concurrently with the application (Section IV).
Finally, we present a prototype of our proposed accelerator

Mutator

Mutator

Static Vars

VM Structs

Mutator

Mutator

Static Vars

VM Structs

Mutator

Mutator

Static Vars

VM Structs

Free Memory

Cells added
to free list

(3) After Compaction(2) After Mark & Sweep(1) Original Heap

Figure 2: Basic GC Operation. The collector performs a traversal of
the object graph, starting from roots such as static variables (arrows are
references). Objects not reached are recycled, either by adding them to a
free list or by compacting reachable objects into a smaller region.

(Section V), show how it is integrated into the rest of the
system and present a detailed evaluation of this prototype
running in FPGA-based simulation (Section VI). We conclude
by discussing implications of this research (Section VII) and
related work (Section VIII).

II. MOTIVATION

The performance overheads and tail-latency problems
arising from GC have been widely measured and cited [3],
[12]–[15]. To demonstrate these problems, we took several
Java applications from the DaCapo benchmark suite [16] and
ran them within the Jikes Research Virtual Machine [17]
on a RISC-V-based system with an in-order Rocket proces-
sor [18] and JikesRVM’s Mark & Sweep stop-the-world GC
(Section VI shows more details on this setup).

Note that we present a specific design point and use
systems that are not as optimized as server-grade JVMs
and processors. However, as far as GC is concerned, our
measurements are within the expected range [3], [19]. We
therefore treat this setup as representative, and will point out
differences to state-of-the-art systems where appropriate.

Figure 1a shows the fraction of CPU time spent in GC
pauses for different workloads. We confirm that workloads
can spend up to 35% of their time performing garbage
collection. Furthermore, Figure 1b shows the impact of
garbage collection pauses on a latency-sensitive workload.
We took the lusearch DaCapo benchmark (which simulates
interactive requests to the Lucene search engine [20]) and
recorded request latencies of a 10K query run (discarding
the first 1K queries for warm-up), assuming that a request
is issued every 100ms and accounting for coordinated
omission [21]. This experiment shows that in the absence of
GC, most requests complete in a short amount of time, but
that GC pauses introduce stragglers that can be two orders
of magnitude longer than the average request.

Long tail latencies result in a decrease in user experience
and require replicating services to maintain the illusion of
availability. Meanwhile, with data center energy consumption
at 70 billion kWh in the U.S. for 2014 [22], even 10% of
energy spent on GC translates into $100Ms per year.

III. BACKGROUND

We first give a broad overview of the current state of
garbage collection, and the design trade-offs involved.

2

Stack

1.	Load	reference
into	register

2.	Remove
reference

Stack
✘BFS	never
visits these
objects

Figure 3: Mutators can hide objects from a concurrently running GC
pass. This happens when removing a reference that has not yet been visited
by the GC and loading it into a register.

Stack

1.	Stack	contains	reference
to	old	object	location

✘Mutator tries	to	access
object	that	has	moved

2.	GC	moves	objects

Stack

Figure 4: Concurrent GC can move objects while mutators are accessing
them. If a mutator encounters a stale reference and uses it to access an
object, it reads the old location, which may not be valid anymore.

A. Garbage Collection Overview

8 out of the 10 most popular languages use GC [23]. The
garbage collector’s task is to periodically free unused memory
and make it available for allocation. In an object-oriented
language, this means that the GC detects objects that are not
reachable and frees their memory. There are two fundamental
strategies for GC: tracing and reference-counting.

A tracing collector (Figure 2) starts from a set of roots,
which are references (i.e., pointers) stored in static/global
variables, the application threads’ stacks and the runtime
system. From these roots, the collector performs a graph
traversal – typically a breadth-first search – and sets a mark
bit in all objects it discovers. In a second step, all unmarked
objects are freed, either by performing a sweep through the
heap and adding the memory of all unmarked objects to a free
list, or by compacting all marked objects into a new region
(which can be done as part of the traversal) and freeing the
old space. The latter requires a relocating collector (i.e., a
GC that can move objects in memory, which means rewriting
all references to objects that have been moved).

In contrast to tracing collectors, reference-counting systems
add a counter to each object that is increased whenever a
reference to it is added, and decreased whenever such a
reference is deleted. Once the counter reaches zero, the
object’s memory can be reclaimed. As such a system cannot
collect objects that form a cyclic reference graph, a backup
tracing collector is required. Reference-counting can therefore
be seen as an optimization to a tracing collector, but the
fundamental task of tracing remains.

There are a range of variants of these basic strategies.
Generational GC divides memory into a young and old
generation; objects are allocated in the young generation,
which is collected more frequently than the old generation.
GCs can either be stop-the-world (stalling all application
threads while the full collection is performed), incremental
(limiting pause times by only executing a partial GC) or

concurrent (running without stalling the application). In this
work, we focus on non-generational tracing GC, both stop-the-
world and concurrent. Most of our techniques would apply
to generational GC as well, but would require extensions to
track cross-generation references.

B. Concurrent Garbage Collection

Stop-the-world collectors are popular, as they are easy to
implement and reason about. However, problems have been
reported applying these collectors to modern workloads [12]–
[14], [24]. Request latencies in data centers and applications
alike are decreasing, and services now often have deadlines
of under 1 ms [25], increasing the relative impact of stop-the-
world pauses (which are often 10s or 100s of ms). Meanwhile,
heap sizes are growing into the terabyte range; as GC work
grows with the size of the heap, this can lead to pauses of
over a minute [26], which is usually problematic.

Concurrent collectors (which run in parallel to the ap-
plication without pausing it for more than a short amount
of time) are therefore seeing renewed interest [27]–[29].
These collectors avoid pauses by running GC on some cores
while the mutators (application threads) continue to run. This
approach avoids pauses, but adds two sources of overhead:
• The collector still has to perform the same operation

as a stop-the-world GC, but it is now running it on
different cores, incurring overheads from interference
in the memory system, such as moving cache lines.

• The collector and mutators now need to communicate to
ensure that each maintains a consistent view of the heap.
This is typically done through barriers, which are small
pieces of code that are added to every reference/pointer
operation by the compiler (not to be confused with
barriers in memory consistency or GPUs).

These barriers can cause significant application slow-downs.
As a point of reference, Oracle’s newly announced concurrent
ZGC collector [28] targets up to 15% slow-down compared to
OpenJDK’s G1 [30] collector, which itself is an incremental
collector with (more lightweight) barriers.

To understand concurrent GC, it is crucial to understand
these barriers. Their purpose is to address the two race
conditions that can happen when running GC at the same time
as the mutators. First, mutators can overwrite references as
the collector is performing its graph traversal (Figure 3). This
means that the mutator can load and overwrite a reference
before the traversal has visited it, and therefore hide it from
the collector. The collector will not mark the object and will
thus free it even though it is still reachable. This problem
can be avoided with a write barrier: every time a reference
is overwritten, its previous value is added to the traversal’s
frontier (note that many variants of such barriers exist).

Second, a relocating collector may move objects in the
heap that a mutator is accessing (Figure 4). This can lead to
a mutator trying to access an object using an old reference.
This can be avoided with a read barrier: When reading a

3

Traversal Unit

CPUCPU

Mark Queue

Tracer

Memory Controller/
DRAM

CPU

Co
he

re
nc

e
Hu

b

PC

L1 Cache

I-T
LB

IC
ac

he

De
co

de

Ex
ec

ut
e

Load/storeTLB DCache

INST = RB r1, N(r2)
& protection fault

INST = RB r1, N(r2)
& r1 not marked

Write-
back

Cache

Reclamation Unit

Reader Marker

Address Range

Return new address

L1 Cache

Forwarding
Table

Reclamation
Logic

Spill to memory

Spill to
memory

Store r1
Load

Lookup

Address Range

Mark-through
References

Ar
bi

te
r

Ar
bi

te
r

Update [r2+N]

TLB

TLB

Instruction Fission: REFLOAD r1, N(r2) è LD r1, N(r2) ; RB r1, N(r2)

Figure 5: Overview of our GC Design. We introduce two units, a Traversal Unit that performs the GC’s graph traversal (i.e., marking), and a Reclamation
Unit that identifies and frees dead memory (i.e., sweeping). These units are connected to the on-chip interconnect, similar to other DMA-capable devices.
Blue shows optional CPU modifications for concurrent GC. Red are changes for concurrent, relocating GC. Green shows an optional change to reduce
code size by fusing the read barrier and the load instruction into a single REFLOAD instruction. All of these CPU changes are for performance and not
fundamentally required. For simplicity, we show an in-order pipeline, but the changes could be implemented in an out-of-order core as well.

reference into a register, the barrier code checks that the
object’s location has not changed, and if it has, looks up the
new location (once again, there are many variants of this).

It is these barriers that most existing hardware support for
GC is targeting [6], [31], [32]. We now review this work.

Barrier Implementations: Barriers span a wide design
space that trades off fast-path latency (e.g., if a read barrier’s
object has not moved), slow-path latency (e.g., if the barrier
gets triggered because the object has moved), the instruction
footprint and how it maps to the underlying microarchitecture
(i.e., how well it can be interleaved with existing code).
As barriers are very common operations – they typically
have to be added to every reference read and/or write
operation – these design decisions have a substantial impact
on application and collector performance. Fundamentally,
there are three basic approaches:

1) Compile the code for checking the barrier condition
into the instruction stream and branch to a slow-path
handler whenever the barrier triggers. One special case
of this is a forwarding table (which has no fast-path).

2) Reuse the virtual memory system to fold the barrier
check into existing memory accesses and incur a trap
if it triggers. For example, the OS can unmap pages
whose objects have been compacted into a new space,
which means that any accesses using old references
will raise a page fault. The trap handler can then look
up the new location and fix the old reference.

3) Introduce a barrier instruction in hardware. The se-
mantics of these instructions vary, but they typically
have similarities to the second approach and raise a
fast user-level trap if the barrier triggers.

This leads to a trade-off between invasiveness, programma-

bility and performance. Most existing designs choose option
(1), minimizing invasiveness by operating solely in software
(e.g., the G1 collector [30] and Go’s concurrent GC [29]).
Options (2) and (3) have been used in systems such as IBM’s
z14 [33] or Azul’s Vega [6]. For example, the Pauseless
algorithm [6] relied on a barrier instruction that raises fast
user-level traps in the slow-path case, while IBM’s Guarded
Storage Facility [34] protects regions and raises a trap when
loading a pointer to them. These designs are invasive as they
change the CPU, but maintain programmability. While they
speed up the fast path, the slow path may still result in an
expensive pipeline flush or instruction stream redirect.

IV. GC ACCELERATOR DESIGN

We take a complementary approach. Even if barriers
account for 15% overhead, the main cost in terms of CPU
time is still the actual GC work. Our insight is that GC is
a bad fit for CPUs, and regular enough to be executed in
hardware (a similar argument as for page-table walkers). By
offloading GC to a small accelerator that takes up a fraction
of the area and energy of a CPU core, we can reduce the
impact of the GC work (at the cost of programmability).

While the idea of a GC accelerator is not entirely new [5],
[7], [31], we are not aware of any work that has explored this
idea in the context of full-stack high-performance SoCs. Our
proposed accelerator could be used in either a stop-the-world
setting (freeing up CPU cores to run other applications), or
could be combined with barriers to be used in a pause-free
collector. We also propose optional CPU modifications to
reduce the cost of these barriers, but they are not required.

Motivation: Our design is motivated by one key insight:
CPUs are a bad fit for GC operations. 75% of time in a Mark
& Sweep collector is spent in the mark phase (Figure 15).

4

c a HEAD (✔ #REFS) b d e

HEAD a b c d eType	
Descriptor

Reference	Offsets
Object	Reference

Object	Reference

(a)	Conventional	Object	Layout

(b)	Bidirectional	Object	Layout

Class	A
int a

Object b

Class	B
int c

Object d

Object e

#REFS

Figure 6: Bidirectional Object Layout. To support inheritance, objects are
laid out with the fields of all parents first, followed by the class’s own
fields. This results in reference fields interspersed throughout the object. In
a bidirectional layout, the header is placed in the middle, all reference fields
are stored on one side of the header, and all non-reference fields on the
other. This layout still supports inheritance, but identifies reference fields
without any extra accesses.

At each step of this operation, the collector takes an element
out of the mark queue/frontier, marks it, and (if it has not
been marked yet) copies all outbound references back into
the mark queue. To make this operation efficient, the system
needs to keep as many requests in flight as possible.

On an out-of-order CPU, this number is limited by the size
of the load-store queue and the instruction window [35]. For
this reason, modern GCs are often parallel, using multiple
cores in the machine to speed up the graph traversal. However,
this is not making efficient use of most of the hardware in a
CPU core (even when using wimpy cores [3]). The operation
does not use most functional units, and cannot make effective
use of caches (as each object is only copied once, and the
only temporal locality that can be exploited is for mark
bits – i.e., one bit per cache-line). Similarly, sweeping and
compaction are embarrassingly parallel operations (as each
page can be swept independently), and only touch every
word once, also making them a poor fit for the CPU.

We claim that the same operations could be executed much
more efficiently in a small, energy-efficient accelerator that is
located next to the memory controller (Figure 5). Our design
has two parts, a Traversal Unit that performs the mark phase,
and a Reclamation Unit that sweeps the memory and places
the resulting free lists into main memory for the application
on the CPU to use during allocation.

A. The Traversal Unit

The traversal unit implements a pipelined version of the
graph traversal described in the previous section. There are
three ideas that, taken together, enable our traversal unit
design to outperform a CPU by 4.2× at 18.5% the area.

I. Bidirectional Object Layout: GC does not benefit much
from caches, and the traversal unit can therefore save most of
this area and power. However, if one were to use a cacheless
accelerator design with an unmodified language runtime
system, the performance would be poor [19]. The reason
is that when copying the outbound references of an object
back into the mark queue, the collector has to identify which

Mark	Queue	of	References

Object	Reference #REFS

(Base	address,	#REFS)3.	Add	if	not	marked	AND	#REFS	>	0

Decouple	header	and	
reference	accessesc a HEAD (✔ #REFS) b d e

4.	Issue	untagged
requests

Marker

Tracer

2.	Mark	object	and	read	#refs	in	single	atomic	fetch-or

1.	Read	object
reference from
mark	queue

Figure 7: Traversal Unit Operation. The marker removes objects from
the on-chip mark queue, uses a single atomic memory operation (AMO)
to mark the header word and receive the number of outbound references,
and (if the object has not been marked yet), enqueues it to the tracer queue.
The tracer takes elements from this queue and copies the object’s references
into the mark queue using untagged memory requests.

Block	
List

Reader Block	Sweeper

Block	
List	

Writer

Cache	+	TLB

… Block	Sweeper

…

N Empty
blocks

Live
blocks

X

Figure 8: Reclamation Unit. Blocks are read from a global block list,
distributed to blocks sweepers that reclaim them in parallel, and then written
back to the respective free lists of empty and (partially) live blocks.

fields contain these references. While this can be achieved
using specialized functions or tag bits on architectures that
support them [36], most runtime systems use a layout where
the object’s header points to a type information block (TIB),
which lists the offsets of the reference fields (Figure 6a).

This approach works well on systems with caches, since
most TIBs are in the cache. However, it adds two additional
memory accesses per object in a cacheless system. To address
this, we use a bidirectional layout (Figure 6b). This layout
was used by SableVM [37] as a means to improve locality,
but its benefits on CPUs have been limited [38]. However, we
found that such a layout helps greatly on a system without
caches, as it eliminates the extra accesses. Its access pattern
(a unit-stride copy) is beneficial as well.

While this approach requires adapting the runtime system
to target our accelerator, the changes are invisible to the
application and contained at the language-runtime level.

II. Decoupled Marking and Copying: With the bidirec-
tional layout in place, we can store the mark bit and the
number of references in a single header word, which allows
us to mark an object and receive the outbound number of
references in a single fetch-or operation. On a CPU, a limited
number of these requests can be in flight, due to the limited
size of the load-store queue. Since the outcome of the mark
operation determines whether or not references need to be
copied, this limits how far a CPU can speculate ahead in the
control flow (and causes expensive branch mispredicts).

On the traversal unit, the number of outstanding requests
can be larger but is still limited by the number of available

5

MSHRs. If the unit encounters a large number of objects
without outbound references or that have already been
marked, our effective bandwidth is limited by the mark
operation. Similarly, if there are long objects, we are limited
by copying (or “tracing”) the references of these objects.

We therefore decouple the marking and tracing from each
other. Our traversal unit consists of a pipeline with a marker
and a tracer connected via a tracer queue (Figure 7). If a long
object is being examined by the tracer, the marker continues
operating and the queue fills up. Likewise, if there are few
objects to trace, the queue is drained. This design allows us
to make better use of the available memory bandwidth than
a control-flow-limited CPU could (Section VI).

III. Untagged Reference Tracing: While the marker needs
to track memory requests (to match returning mark bits to
their objects), the order in which references are added to the
mark queue does not affect correctness. The tracer therefore
does not need to store request state, but can instead send as
many requests into the memory system as possible, and add
responses to the mark queue in the order they return. This
increases bandwidth utilization (Figure 16).

B. The Reclamation Unit

Taken together, the previous three strategies enable the
traversal unit to achieve a higher memory bandwidth than the
CPU, at a fraction of on-chip area and power. The reclamation
unit achieves the same for the sweeping operation. While
this operation is highly dependent on the underlying GC
algorithm, it typically involves iterating through a list of
blocks and either (1) evacuating all live objects in a block
into a new location (for relocating GC) or (2) arranging all
dead objects into a free list (for non-relocating GC).

Each of these operations can be performed with a small
state machine, and can be parallelized across blocks. We
therefore designed a unit that iterates through all blocks and
parallelizes them across a set of block sweeper units that each
reclaim memory in a block independently and then return
the block to either a list of free or live blocks (Figure 8). As
each unit is negligibly small, a large part of the design is
the cross-bar that connects them.

C. Runtime System Interactions

Using the unit in a stop-the-world setting requires mini-
mum integration beyond the new object layout. The runtime
system first needs to identify the set of roots (which can be
done in software without stalling the application [39]) and
write them into a memory region visible to the accelerator. It
also has to inform the unit where in memory the allocation
regions are located, as well as configuration parameters
(e.g., available size classes). Beyond this, the unit acts
autonomously and the runtime system polls a control register
to wait for it to be ready. Note that no modifications to the
CPU or memory system are required. Instead, the unit acts
as a memory-mapped device, similar to a NIC.

CPU	Cache

0..0	|	… |	0..0

Address	Range
0x10..0	- 0x111..1

RB(x):
X = (1<<63)|x
return *X + x

1

Reclamation	
Unit

Interconnect

Cache	Line

Δ y1 |	Δy2 |	… |	Δyn2 Δ y1
Read	barrier	always	

returns	new	address	of	
x	(y	=	x+Δy	if	object	was	
relocated,	x	otherwise)

0..0	(Zero	page)

Acquire

Grant

Ad
dr
es
s	T

ra
ns
la
tio

n

Relocated

Not	relocated

Figure 9: Read Barrier. The barrier checks object references and ensures
they point to their new location, whether or not they have been moved.
By relying on the existing coherence protocol, the functionality can be
implemented in hardware without changing the CPU or memory system.

D. Concurrent Garbage Collection

Our design can be integrated into a concurrent GC without
modifying the CPU. While not implemented in our prototype,
we propose a novel barrier design that eliminates instruction
stream redirects for both the fast and slow path. Our insight
is that by “hijacking” the coherence protocol, barriers can
be implemented without traps or branch mispredicts.

Write Barrier: When overwriting a reference, write it into
the same region in memory that is used to communicate the
roots. The traversal unit writes all references that are written
into this region to the mark queue.

Read Barrier: For a relocating collector (where the
reclamation unit moves objects in memory), the read barrier
needs to check whether an object has moved and get the
object’s new location if it has. Many relocating GCs operate
on large pages or regions, and invalidate all objects within
the same page at a time (e.g., Pauseless GC [6]). They then
compact all objects from these pages into new locations,
keeping a forwarding table to map old to new addresses.

We propose adding a new range to the physical address
space that nominally belongs to the Reclamation Unit but is
not backed by actual DRAM (Figure 9). We then steal one
bit of each virtual address (say, the MSB), mapping the heap
to the bottom half of the virtual address space. Whenever
we read a reference into a register, we add instructions that
take the address, flip this special bit, read from that location
in virtual memory and add the result to the original address.

By default, we map the top half of this virtual address
space to a page that is all zeros. All these loads hence return
0 (i.e., the object has not moved). However, when we are
relocating objects on a page, we map the corresponding
VM page to the reclamation unit’s physical address range
instead. The unit then sends out probe messages across the
interconnect to take exclusive ownership of all cache lines in
this page. This means that whenever a thread tries to access
an object within this page, the CPU needs to acquire this
cache line from the reclamation unit. When responding to
the request, the unit computes the deltas between the new
and the original addresses for the objects in the cache line.
It then releases the cache line, the CPU reads from it and
adds the value to the original address, updating it to the new
value. This communication only has to happen once, as the
cache line is in the cache when the object is accessed again.

6

E. Optional CPU Extensions

While these barriers avoid traps and are semantically more
similar to loads that might miss in the LLC, they double
the TLB footprint and introduce additional cache pressure
(as well as instruction overheads). We therefore sketch out
optional CPU changes that may allow hiding most of these
overheads as well. We have not implemented these changes,
but are considering them for future work.

The challenge is the read barrier (the write barrier check
can be folded into the read barrier by checking whether the
loaded reference was visited yet and writing it into the mark
queue otherwise [6]). The read barrier is problematic since
it needs to complete before the reference it is guarding can
be used. Pauseless GC has shown that this barrier check can
be made very efficient by folding it into the virtual memory
system [6]: pages that are evacuated are marked as invalid in
the page table and the barrier raises a trap when these pages
are accessed. However, these traps can be very frequent if
churn is large (resulting in trap storms when many pages
are freshly invalidated), and are expensive as they require
flushing the pipeline and cannot be speculated over.

We propose a change to the CPU by introducing a
new REFLOAD instruction, which behaves like a load, but
always returns the new address of an object. Internally, this
instruction will be split into a load and a read barrier (RB)
instruction. The read barrier can be implemented through the
previously described virtual-memory trick, but the page fault
from the TLB is intercepted and transformed into a load
from the reclamation unit’s address range. The load is then
added to the load-store queue and can be speculated over
like any other load (the GC unit will not release the cache
line until it has looked up the new location). This means that
the only effect of the GC are loads that may take longer, but
traps and pipeline flushes are eliminated.

V. IMPLEMENTATION

We now describe our specific implementation of this
general design. We implemented an RTL prototype of the GC
unit within a RocketChip SoC [18]. The unit is integrated with
the JikesRVM Java VM [17], which is popular in academic
managed-language research. We evaluate our prototype in a
stop-the-world setting, but as previously described, it could
be used in a concurrent collector as well. Figure 10 shows
an overview of how our design is integrated into the system.

A. JikesRVM Modifications

We use a port of JikesRVM to RISC-V [40], which enabled
us to co-design language runtime system and hardware:

MMTk: We implemented a new plan in Jikes’s MMTk GC
framework [41]. A plan describes the spaces that make up
the heap, as well as allocation and GC strategies for each
of them. We base our work on the MarkSweep collector,
which consists of 9 spaces, including large object space, code

Physical	Memory

CPU

JikesRVM

libhwgc.so

Linux	kernel Driver:	/dev/hwgc0

SysCall

HWGC
UnitMMIO

Communication	
(hwgc-space)

Queue

MMTk

Java	Application

JikesRVM Heap

Spill	Region Page	Tables

Set	up
page	table	base	pointer,	configuration	registers	and	launch	GC

Allocate
physical	
spill
region

Marker,	
Sweeper

Read/write	device

Software Hardware

HWGC Plan hwgc-space

Interconnect	(TileLink)

Figure 10: System Integration. Green boxes refer to components we added
to the system, yellow is the OS and orange represents JikesRVM.

#REFS	|	101	 c a TIB #REFS		| THINLOCK	| 1	|	✔ b d

Object	Reference#REFS

Cell	Start Tag	Bit Mark	Bit

32	bit

NEXTPTR	| 000 Free	cell	(#1	on	free	list)

NEXTPTR	| 000 Free	cell	(#2	on	free	list)

Base

Base
+Size

Base
+2*Size

…
Base

+3*Size

Status	Word

Figure 11: JikesRVM Integration. Memory is divided into blocks, which
are split into equisized cells (each field represents a 64b word). Cells either
include objects or free list entries. References in Jikes point to the second
object field to facilitate array offset calculation.

space and immortal space. Our collector traces all of these
spaces, but only reclaims the main MarkSweep space (which
contains most freshly allocated objects). The other spaces,
such as the code space, are still managed by Jikes, but there
is no fundamental reason they could not use the GC unit.

Root Scanning: We modify the root scanning mechanism
in Jikes to not write the references into the software GC’s
mark queue but instead write them into a region in memory
that is visible to the GC unit (heap-space).

Object Layout: We modified the object layout to implement
a bidirectional scheme (Section V-C). We found 34 unused
bits in the header’s status word (Figure 11) – we use 32 of
these bits to store the number of references in an object (for
arrays, we set the MSB of these 32 bits to 1 to distinguish
them). The remaining two bits are used for the mark bit and
for a tag bit that we set to 1 for all live cells (this is useful
for the reclamation unit). Furthermore, we also replicate
the reference count at the beginning of the array, which is
necessary to enable linear scans through the heap.

Jikes’s Mark & Sweep plan uses a segregated free list
allocator. Memory is divided into blocks, and each block is
assigned a size class, which determines the size of the cells
that the block is divided into. Each cell either contains an
object or a free list entry, which link all empty cells together.

B. Integration into RocketChip

Our accelerator is implemented in RocketChip, a RISC-
V SoC generator managed by the Free Chips Project [42].
RocketChip can target both FPGA and ASIC flows and
has been taped out more than a dozen times, including in
commercial products [43]. By implementing our design as

7

EnqueueDequeue

Q	(main	queue)

outQinQ if	Q.fullif	Q.empty

To	memoryFrom	memory

if	!outQ.empty
&&	!inQ.full

Figure 12: Mark Queue Spilling. When the main mark queue (Q) fills
up, requests are redirected to outQ, which is written to memory. When Q
empties, these requests are read back through inQ.

an end-to-end prototype in the context of a real SoC, we
show that it is non-invasive and can be easily integrated into
an existing design. This approach also enables us to perform
cycle-accurate evaluation using an FPGA-based simulation
platform, and gather area and power estimates (Section VI).

RocketChip is written in Chisel [44], a hardware de-
scription language embedded in Scala. Chisel is not an
HLS tool but operates directly at the RTL level. By being
embedded in Scala, it makes it easier to write parametrizable
generators. RocketChip also provides a library of highly
parameterizable components such as cores, devices, caches
and other functional units. Devices and cores are connected
together using a shared-memory interconnect called TileLink,
which automatically negotiates communication contracts
between endpoints using the Diplomacy framework [45].

To integrate a new device into this system, we created a
new Chisel module which we register as a TileLink client
and connect it to the system bus (which is the RocketChip
equivalent of the Northbridge). We also connect a set of
memory mapped (MMIO) registers to the periphery bus
(Southbridge), for configuration and communication with the
CPU. Diplomacy automatically infers the necessary protocol
logic, wires the module into the SoC and produces a device-
tree structure that can be used to configure Linux drivers.

C. Traversal Unit

The traversal unit closely follows the design in Figure 5.
We explored several versions of the marker and tracer: one
connects to a shared 16KB data cache, one partitions this
cache among the units and one directly talks to the TileLink
interconnect. As the GC unit operates on virtual addresses,
we added a page-table walker and TLB (the PTW is backed
by an 8KB cache, to hold the top levels of the page table).

At the beginning of a GC, a reader copies all references
from the hwgc-space into the mark queue. Then, the marker
and tracer begin dequeuing references from their respective
input queues and put their results into their output (the queues
exert back-pressure to avoid overflowing, and marker and
tracer can only issue requests if there is space). This repeats
until all queues and the hwgc-space are empty.

Mark Queue Spilling: As the mark queue can theoretically
grow arbitrarily, we need to spill it to memory when it fills
up. Figure 12 shows our approach. We add two additional
queues, inQ and outQ. A small state machine writes entries

Memory

TLB

PTW

Req (tag,addr)

Req (tag,addr)

Req (tag,addr)

… Read
Tag	
Free	
List

Mark	Bit

Write-
backRef

Tracer	QueueFree	tag	/	stall

Tag-Address	mapping

Figure 13: Marker. Instead of using a cache with MSHRs, we manage our
own requests, as they are identical and unordered.

Memory

TLB

PTW

Req.	
Gen.

Tracer	
Queue

Mark	Queue

State	machine	generating	reqs.

Next
page

Figure 14: Tracer. The request generator walks the reference section and
issues the largest requests it can based on the current alignment.

from outQ into a physical memory range not shared with
JikesRVM, and reads entries from this memory into inQ if
there is space (and outQ is empty). We always give priority
to the main queue, but if it is full, we enqueue to outQ (when
it is empty, we dequeue from inQ). When outQ reaches a
certain fill level, we assert a signal that tells the tracer to
stop issuing memory requests, to avoid outQ from filling up.
If there are elements in outQ and free slots in inQ, we copy
them directly, reducing the number of memory requests. By
prioritizing memory requests from outQ, we avoid deadlock.

Marker: We started out with a design that sends AMOs to
a non-blocking L1 cache. However, this limits the number of
requests in flights (a typical L1 cache design has 32 MSHRs).
MSHRs operate on 64B cache lines, and need to store an
entire request. In contrast, all requests in the marker are
the same, operate on less than a cache line, and do not
need to be ordered. We therefore built a custom marker that
talks to the interconnect directly (Figure 13). Instead of full
memory requests, we only hold a tag and a 64-bit address
for each request, translate them using a dedicated TLB, send
the resulting reads into the memory system and then handle
responses in the order they return. For each response, we
then issue the corresponding write-back request to store the
updated mark bit and free the request slot (we can elide
write-backs if the object was already marked).

Tracer: We built a custom tracer that can keep an arbitrary
number of requests in flight. After translating the virtual
address of the object, it enters a request generator, which
sends Get coherence messages into the memory system. Our
interconnect supports transfer sizes from 8 to 64B, but they
have to be aligned. If we need to copy 15 references (15×8
bytes) at 0x1a18, we therefore issue requests of transfer
sizes 8, 32, 64, 16 (in this order). Note that we need to detect
when we hit a page boundary; in this case, the request is
interrupted and re-enqueued to pass through the TLB again.

Address Compression: We operate on 64-bit pointers, but
runtime systems do not typically use the whole address space.
For example, our JikesRVM heap uses the upper 36 bit of

8

each address to denote the space, and the lowest 3 bit are 0
because pointers are 64-bit aligned. Many runtime systems
also use bits in the address to encode meta-data, which may
be safely ignored by the GC unit. Our design provides a
general mechanism to exploit this property: before enqueuing
a reference to the mark queue, it can be mapped to a smaller
number of bits using a custom function (the reverse function
is applied when the object is dequeued). We demonstrate
this strategy by compressing addresses into 32 bits, which
doubles the effective size of the mark queue and halves the
amount of traffic for spilling. Runtime systems with larger
heaps may use a larger number of bits instead (e.g., 48).

Mark Bit Cache: Most objects are only accessed once, and
therefore do not benefit from caching (Figure 21a). However,
we found that there are a small number of objects that are
an exception to the rule: about 10% of mark operations
access the same 56 objects in our benchmarks. We therefore
conclude that a small mark bit cache that stores a set of
recently accessed objects can be efficient at reducing traffic.
Dynamic filtering is another technique that has been shown
to be effective in similar scenarios [32].

D. Reclamation Unit

In our prototype, we implement the simplest version of the
reclamation unit, which executes a non-relocating sweep. As
such, it does not require the forwarding table or read-barrier
backend from Section IV-D. Each block sweeper receives
as input the base address of a block, as well as its cell and
header sizes. It then steps through the cells linearly.

The unit first needs to identify whether a cell contains an
object or free list entry (recall Figure 11). It reads the word
at the beginning of the cell – if the LSB is 1, it is an object
with a bidirectional layout. Otherwise, it is a next-pointer
in a free cell or a TIB (for an object without references, or
an array). Based on each of these cases, we can calculate
the location of the word containing the mark bit, which then
allows us to tell whether the cell is free (i.e., the tag bit is
zero), it is live but not reachable (the tag bit is one, the mark
bit is not set) or contains a reachable object (both bits are
1). In the first two cases, we write back the first word to add
it to the free list, otherwise we skip to the next cell.

E. Putting It All Together

With the JikesRVM modifications and the GC unit in place,
the missing part is to allow the two to communicate. This
happens through a Linux driver that we integrated into the
kernel. This driver installs a character device that a process
can write to in order to initialize the settings of the GC
unit, initiate GC and poll its status. When a process accesses
the device, the driver reads its process state, including the
page-table base register and status bits, which are written
to memory-mapped registers in the GC unit and used to
configure its page-table walker. This allows the GC unit to
operate in the same address space as the process on the CPU.

Processor Design (Rocket In-Order CPU @ 1 GHz)
Physical Registers 32 (int), 32 (fp)
ITLB/DTLB Reach 128 KiB (32 entries each)
L1 Caches 16 KiB ICache, 16 KiB DCache
L2 Cache 256 KiB (8-way set-associative)

Memory Model (2 GiB Single Rank, DDR3-2000)
Memory Access Scheduler FR-FCFS MAS (16/8 req. in flight)
Page Policy Open-Page
DRAM Latencies (ns) 14-14-14-47

Table I: RocketChip Configuration

When the driver is initialized at boot time, it allocates
a spill region in physical memory, whose bounds are then
passed to the GC unit. This region has to be contiguous in
physical memory and we currently allocate a static 4MB
range by default (a full implementation could dynamically
allocate additional memory). To communicate with the driver,
we also extend JikesRVM with a C library (libhwgc.so).
Our MMTk plan uses Jikes’s SysCall foreign function inter-
face to call into this C library, which in turn communicates
with the driver to configure the hardware collector (e.g.,
setting the pointer to the hwgc-space), and to initiate a
new collection. By replacing libhwgc, we can swap in a
software implementation of our GC, as well as a version that
performs software checks of the hardware unit (or produces
a snapshot of the heap). This approach helped for debugging.

VI. EVALUATION

To evaluate our design, we ran it in FPGA-based simula-
tion, using a simulation framework called FireSim [46] on
Amazon EC2 F1 instances. FireSim enabled us to run cycle-
accurate simulation at effective simulation rates of up to 125
MHz (on Xilinx UltraScale+ XCVU9P FPGAs). While our
target RTL executes cycle-accurately on the FPGA, FireSim
provides timing models for the memory system (in particular,
DRAM and memory controller timing). This framework is
similar to DRAM simulators such as DRAMSim [47], but
runs at FPGA speeds and uses a FAME-style approach to
adjust target timing to match the models [48].

Table I shows the configuration of our RocketChip SoC
and the parameters of the memory model that we are using.
We compare against an in-order Rocket core, which is
comparable to a little/wimpy core in a BIG.little setup. We
think this baseline is appropriate: A preliminary analysis of
running heap snapshots on an older version of RocketChip’s
BOOM out-of-order core with DRAMSim showed that it
outperformed Rocket by only around 12% on average [49].
This may be surprising, but limited benefits of out-of-order
cores for GC have been confirmed on Intel systems [3].

The goal of our prototype and evaluation is (1) to
demonstrate the potential efficiency of our unit in terms
of GC performance and area use, (2) characterize the design
space of parameters, and (3) show that these benefits can
be gained without invasive changes to the SoC. While we
integrated our design into RocketChip, our goal is not to
improve this specific system, but instead understand high-
level estimates and trade-offs for our GC unit design.

9

avrora luindex lusearch pmd sunflow xalan
0

50

100

150

200

250

300

350

T
im

e
in

 m
s

Rocket CPU GC Unit

(a) Mark Phase

avrora luindex lusearch pmd sunflow xalan
0

50

100

150

200

250

300

350

T
im

e
in

 m
s

Rocket CPU GC Unit

(b) Sweep Phase

Figure 15: GC Performance. On average, the GC Unit outperforms the
CPU by a factor of 4.2× for mark and 1.9× for sweep.

Figure 16: Memory Bandwidth. Measured for the last GC pause of the
avrora benchmark, based on 64B cache line accesses.

avrora luindex lusearch pmd sunflow xalan
0

50

100

150

200

250

300

350

T
im

e
in

 m
s

Rocket CPU Mark
GC Unit Mark

Sweep
Sweep

(a) Mark/Sweep Performance (b) Memory Bandwidth

Figure 17: GC Performance with 1 cycle DRAM and 8 GB/s bandwidth.
As some requests are smaller than cache lines, the amount of usable data is
smaller than the theoretical peak bandwidth.

A. Garbage Collection Performance

Methodology: We evaluate performance using the subset
of DaCapo benchmarks [16] that runs on our version of
JikesRVM (not specific to RISC-V). We use the small
benchmark size on a 200MB maximum heap and average
across all GC pauses during the benchmark execution.

Our JikesRVM port does not include the optimizing JIT
compiler. As Jikes JIT-compiles itself, this would have
resulted in a slow baseline of the CPU version of the GC.
We therefore rewrote Jikes’s GC in C, compiling it with -O3
and linking it into the JVM using the same libhwgc.so
library that we use to communicate with our hardware unit.

Overall Performance: Our baseline GC unit design contains
2 sweepers, a 1,024 entry mark-queue, 16 request slots for
the marker, 32-entry TLBs and a 128-entry shared L2 TLB.
This configuration outperforms Rocket by 4.2× on mark and
1.9× on sweep (Figure 15).

Memory Bandwidth: Figure 16 shows the source of
this gain: our unit is more effective at exploiting memory
bandwidth, particularly during the mark phase. This was con-
firmed by experimenting with different memory scheduling
strategies: While Rocket was insensitive to the configuration,

we found that our performance was significantly improved
changing from FIFO MAS to FR-FCFS and increasing the
maximum number of outstanding reads from 8 to 16.

Potential Performance: While the previous experiment
showed a specific design point with a realistic memory model,
we want to fundamentally understand how much memory
bandwidth our unit can exploit if it was given a faster memory
system. We therefore replaced our model with a latency-
bandwidth pipe of latency 1 cycle and bandwidth 8 GB/s.
In this regime, we outperform the CPU by an average of
9.0× on the mark phase (Figure 17a). We believe that this
is similar to the speed-ups we could see in a high-end SoC
with higher memory bandwidth and lower latency. Note that
the limited speedup for the sweep phase is based on using
only two sweepers, and can be increased (Section VI-B).

Instrumenting our unit, we found that our TileLink port
is busy 88% of all mark cycles. Figure 17b shows that this
translates to a request being sent into the memory system
every 8.66 cycles. With 64B cache lines, one request every 8
cycles would be the full bandwidth of the 8GB/s system, but
as our requests are less than 64B in size, we sometimes
exceed this limit. Using small requests also means that,
depending on the memory system, we may not be able to
use all 8 GB/s (we consume a maximum 3.3 GB/s of data).

Limits/Impact of TLBs: To understand what prevents our
baseline from reaching this 9.0× speedup, we instrumented
the unit to record sources of stalls. We also compared to
preliminary simulations on DRAMSim with 8 banks and no
virtual memory, which showed 8.5× speedup over Rocket.

One bottleneck are TLB accesses in marker and tracer: as
the TLB and page table walker are blocking, TLB misses can
serialize execution. Future work should therefore introduce a
non-blocking TLB that can perform multiple page-table walks
concurrently while still serving requests that hit in the TLB.
As the unit is pipelined, there is also an opportunity to use
bigger multi-cycle TLBs, which might reduce TLB pressure
and improve area, as they can use sequential SRAMs.

B. Impact of Design Parameters

Cache Partitioning: As described in Section V-C, we started
with a design that had a small, shared cache. We found that
this performed barely better than the CPU. Figure 18a shows
why: 2/3 of requests to the cache are from the page-table
walker (as the mark phase has little locality and therefore
introduces a large number of TLB misses).

This creates a lot of contention on the cache’s crossbar,
effectively drowning out requests by other units. This led us
to apply cache partitioning: The PTW benefits from a small
8KB cache to hold part of the page table, while the mark
queue and sweeper access memory sequentially and therefore
only need 2 cache lines. Meanwhile, the marker and tracer
can connect to the interconnect directly. Another advantage
of this setup is that we can remove features from caches

10

avrora luindex lusearch pmd sunflow xalan
0

2

4

6

8

10

12

14

N
um

be
r

of
 r

eq
ue

st
s

(m
ill

io
ns

)

Mark Queue
PTW

Tracer
Marker

(a) L1 Cache Requests

avrora luindex lusearch pmd sunflow xalan
0

2

4

6

8

10

12

14

N
um

be
r

of
 m

is
se

s
(m

ill
io

ns
)

Mark Queue
PTW

Tracer
Marker

(b) Memory Requests

Figure 18: Traversal Unit Memory Requests. In order to reduce contention,
we partition the L1 cache into smaller caches.

2 4 18 130
Mark Queue Size (KB)

0

20

40

60

80

100

120

S
pi

lli
ng

 M
em

or
y

R
eq

ue
st

s
(1

00
0s

)

TQ=128 TQ=8 Comp.

(a) Spilling Memory Requests

2 4 18 130
Mark Queue Size (KB)

0

20

40

60

80

100

120

A
ve

ra
ge

 m
ar

k
tim

e
(m

s)

TQ=128 TQ=8 Comp.

(b) Mark Performance

Figure 19: Mark Queue Size Trade-Offs. Sizes include inQ/outQ and we
show numbers for two different tracer queue (TQ) sizes, as well as with
compressed references.

that are not needed (e.g., the mark queue only operates on
physical memory and therefore does not need a TLB).

The result is shown in Figure 18b: In terms of memory
requests that are sent into the actual memory system, marker
and tracer now dominate (which is the intention, as these
are the units that perform the actual work).

Impact of Mark Queue Size: The mark queue is the largest
data structure of our unit and we assumed that its size has
a major impact on performance. Figure 19 shows that the
size has an impact on the amount of spilled data. However,
spilling accounts for only ≈ 2% of memory requests.

We were surprised to find that the mark queue’s impact
on overall performance is small. The reason is that most of
the parallelism in the heap traversal exists at the beginning:
The queue fills up, almost all of this data is spilled into
memory and in the steady state that follows, enqueuing and
dequeueing occur at about the same rate, which means that
the queue stays mostly full without much spilling.

We can therefore make the queue very small (e.g., 2 KB)
without sacrificing performance. An interesting trade-off is
that we could throttle the tracer to match the dequeueing rate
of the mark queue. As every reference in the tracer queue
expands to multiple references in the mark queue, this would
help manage the amount of spilling.

Mark Bit Caching: A small number of objects account for
10% of all memory accesses (Figure 21). Storing the most
recently seen references therefore helps reduce the number
of marks requests. The largest gain per area can be achieved
with a small cache (<64 elements). At the same time, we
found this to not have a substantial impact on the mark
performance (but this may change closer to peak bandwidth).

1 2 3 4 5 6 7 8
Number of block sweepers

1

2

3

4

S
pe

ed
up

 r
el

at
iv

e
to

 S
W avrora

luindex
lusearch
pmd
sunflow
xalan

Figure 20: Scaling the number of block sweepers. Performance is reported
as speed-up relative to the software implementation.

1 2 4 8 16 32 64 128 256 512 1024
Number of Object Accesses per Mark

102

103

104

105

N
um

be
r

of
 O

bj
ec

ts

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 A

cc
es

se
s

(a) Access Frequencies

avrora luindex lusearch pmd sunflow xalan
Benchmark

1.0

1.1

1.2

1.3

1.4

1.5

M
em

or
y

R
eq

ue
st

s
pe

r
R

ef
er

en
ce

0
64

128
256

(b) Effect of Caching

Figure 21: Impact of Mark Bit Cache. 56 objects account for 10% of
accesses (8th GC of luindex), and we can filter these with a cache.

Mark Queue Compression: Figure 19 shows that our
compression scheme from Section V-C reduces spilling by a
factor of 2. Note that this scheme compresses to 32b – real
implementations would likely need to preserve at least 48b.

Sweeper Parallelism: Figure 20 shows how additional
block sweepers improve sweep performance. We found that
we scale linearly to 2 sweepers but that beyond this point,
speed-ups start to reduce. At 8 sweepers, the contention
on the memory system starts to outweigh the benefits from
parallelism. 4 sweepers outperform the CPU by 2-3×. The
optimal number depends on the system design.

C. Area & Power Synthesis Results
We ran our design through Synopsys Design Compiler in

topographical mode with the SAED EDK 32/28 standard cell
library [50], using a VLSI flow developed at Berkeley called
HAMMER [51]. This provides us with ballpark estimates
of area and power numbers. Figure 22 shows that our GC
unit is 18.5% the size of the CPU, most of which is taken
by the mark queue. This is comparable to the area of 64KB
of SRAM. Note that this is comparing to a small CPU – the
trade-off would be much more pronounced in a server or
mobile SoC, where a block of this size is negligible.

To estimate energy, we collected DRAM-level counters for
the GC pauses in Figure 16 and ran them through MICRON’s
DDR3 Power Calculator spreadsheet [52]. Power numbers for
the GC unit and processor were taken from Design Compiler.
Using these power numbers and execution times, we calculate
the total energy, broken into mark and sweep (Figure 23).
Without activity counters, these results are not exact, but we
conclude that the overall energy for the GC unit will likely
improve over the CPU (by 14.5% in our results).

VII. DISCUSSION & FUTURE WORK

Our unit is small enough to be added to any SoC. Its
potential 9× speed-up would translate to application speed-

11

Rocket HWGC
0

2

4

6

8

A
re

a
in

 m
m

^2

(a) Total

L2 Cache L1 DCache Frontend Other
0

2

4

6

8

A
re

a
in

 m
m

^2

(b) Rocket CPU

Mark Q. Tracer Marker PTW Sweeper Other
0.0

0.1

0.2

0.3

0.4

0.5

A
re

a
in

 m
m

^2

(c) GC Unit

Figure 22: Area. Estimated using Synopsys DC with the SAED EDK 32/28
standard cell library. Note that Rocket is a small CPU.

0 100 200 300 400
Power (mW)

Core

DRAM

Rocket GC Unit

0 10 20 30 40 50 60
Energy (mJ)

avrora
luindex

lusearch
pmd

sunflow
xalan

Figure 23: Power and Energy. Due to its higher bandwidth, the GC Unit’s
DRAM power is much higher, but the overall energy is still lower.

ups of 9% if an average of 10% of CPU cycles were spent on
GC (31% if it was 35% [3]). Further, the accelerator not only
decreases on-chip area/power, but also overall energy. Finally,
our design is simple (3,122 lines of Chisel code), reducing
verification effort. We now discuss several additional aspects:

Context Switching: The setup and context switch time could
be made very low: if the device was mapped in user space
and streams the roots as it executes (rather than copying them
at the start), the minimum overhead would be equivalent to
transferring less than 64B into an MMIO region, which is
negligible compared to a mark pass. Flushing the accelerator’s
state would be similar to a context switch on a CPU.

Heap Size Scalability: Due to the lack of caching, most of
the unit’s operation is independent of the heap size. However,
a larger heap size would increase the pressure on TLB and
PTW cache (but not more than for a CPU). As discussed in
Section VI-A, the TLB is currently a bottleneck, but large
heaps could use superpages instead of 4KB pages.

Supporting a general object layout: While the bidirec-
tional layout helps performance, it is not fundamental to our
approach and forcing runtimes to adapt it to support our
unit is limiting. A more general accelerator could support
arbitrary layouts by replacing the marker with a small RISC-
V microcontroller (only implementing the base ISA). We
could then load a small program into this core which parses
the object layout, schedules the appropriate requests and
enqueues outgoing references for the tracer.

Bandwidth Throttling: Our GC unit aims to maximize
bandwidth, potentially interfering with applications on the
CPU. This interference could be reduced by communicating
with the memory controller to only use residual bandwidth.

Proportionality and Parallelism: The accelerator band-
width could potentially be increased by replicating units.

Switching these units on and off would allow a concurrent GC
to throttle or boost tracing, depending on memory pressure in
the application. This can improve energy consumption [53].

Supporting multiple applications: Our current design only
supports one process at a time, but the same unit could
perform GC for multiple processes simultaneously, by tagging
references by process and supporting multiple page tables.

Page faults: The JVM currently has to map the entire
address space. A more general system might handle page
faults as well (likely by forwarding them to the CPU).

VIII. RELATED WORK

Hardware support for garbage collection is not a new idea,
and there has been a large body of work throughout the
years. Most commercial products focus on barriers, including
Azul Vega [6], [54] and IBM’s Guarded Storage Facility [34].
There is also standalone work on barriers [31], [32].

There has been work on hardware support for reference
counting [8], which is orthogonal to our system and reduces
the number of times a tracing collector needs to be invoked.
GC has also seen interest in the real-time and embedded
systems communities, particularly in the context of Java
processors [9], [31], [55]. Some of them introduced GC fea-
tures such as non-blocking object copying [56]. Bidirectional
object layouts have been used in this context as well [55].

There have been several proposals for hardware units
performing garbage collection. For example, the IBM Cell
processor could use its SPE accelerators for GC [57]. Further,
Wright et al. at Sun proposed a hardware-assisted GC that
relied on an object-aware memory architecture [5], [11]. The
design provided a fully concurrent GC but required changes to
the memory system. Finally, Bacon et al. presented a stall-free
GC unit for FPGA on-chip memory, eliminating all pauses [7].
However, this work was in the context of BRAMs on FPGAs,
which are dual-ported and have predictable timing.

Some other accelerators have similarities to our general
approach, but for different types of workloads. For example,
walkers [58] accelerate hash index lookups for databases,
while Mallacc [59] accelerates memory allocation.

IX. CONCLUSION

We introduced the design of a hardware accelerator for
GC that can be integrated into a server or mobile SoC and
performs GC for the application on the CPU. The unit can be
implemented at a very low hardware cost (equivalent to 64KB
of SRAM), generalizes to stop-the-world and concurrent
collectors and does not require modifications to the SoC
beyond those required by any DMA-capable device.

By implementing a prototype of this design in the context
of a real SoC, we demonstrate that the integration effort is
manageable, and that the unit takes up 18.5% the area of a
small CPU, while speeding up GC by 3.3× overall (4.2×
for marking). At this low cost, we believe that there is a
strong case to integrate such a device into SoC designs.

12

ACKNOWLEDGMENTS
We thank Ben Keller for collaborating on a precursor of this work. We

also want to thank Sagar Karandikar, Howard Mao, Donggyu Kim and the
entire FireSim group for their work on the simulation infrastructure we
used, Colin Schmidt for his help with RocketChip, and Edward Wang for
supporting us in using HAMMER. Special thanks is owed to David Biancolin
for developing the on-FPGA memory models used for our evaluation and
supporting our experiments. Finally, this work would not have been possible
without the RocketChip infrastructure developed by many authors, and we
want to especially thank Chris Celio, Henry Cook, Yunsup Lee and Andrew
Waterman for their help and feedback throughout this project. We also want
to thank the many people who have given feedback to this project throughout
the years, including Steve Blackburn, Tim Harris, Kathryn McKinley, Philip
Reames, Ian Rogers, Gil Tene, Mario Wolczko and the anonymous reviewers.
Research was partially funded by ASPIRE Lab sponsors and affiliates Intel,
Google, HPE, Huawei, LGE, NVIDIA, Oracle, and Samsung.

REFERENCES

[1] E. Moss, “The Cleanest Garbage Collection,” Commun. ACM,
vol. 56, no. 12, pp. 100–100, Dec. 2013.

[2] J. McCarthy, “Recursive Functions of Symbolic Expressions
and Their Computation by Machine, Part I,” Commun. ACM,
vol. 3, no. 4, pp. 184–195, Apr. 1960.

[3] T. Cao, S. M. Blackburn, T. Gao, and K. S. McKinley, “The
Yin and Yang of Power and Performance for Asymmetric
Hardware and Managed Software,” in Proceedings of the 39th
International Symposium on Computer Architecture, 2012.

[4] R. Jones and R. Lins, Garbage Collection: Algorithms for
Automatic Dynamic Memory Management. Wiley, Sep. 1996.

[5] G. Wright, “A Hardware-Assisted Concurrent & Parallel GC
Algorithm,” 2008.

[6] C. Click, G. Tene, and M. Wolf, “The Pauseless GC Algorithm,”
in Proceedings of the 1st International Conference on Virtual
Execution Environments, 2005.

[7] D. F. Bacon, P. Cheng, and S. Shukla, “And then There
Were None: A Stall-free Real-time Garbage Collector for
Reconfigurable Hardware,” Commun. ACM, vol. 56, no. 12,
pp. 101–109, Dec. 2013.

[8] J. A. Joao, O. Mutlu, and Y. N. Patt, “Flexible Reference-
counting-based Hardware Acceleration for Garbage Collection,”
in Proceedings of the 36th International Symposium on
Computer Architecture, 2009.

[9] M. Schoeberl, “JOP: A Java Optimized Processor,” in On
The Move to Meaningful Internet Systems 2003: OTM 2003
Workshops, ser. Lecture Notes in Computer Science. Springer,
Berlin, Heidelberg, Nov. 2003, pp. 346–359.

[10] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,
R. Bajwa et al., “In-Datacenter Performance Analysis of a
Tensor Processing Unit,” in Proceedings of the 44th Annual
International Symposium on Computer Architecture, 2017.

[11] G. Wright, M. L. Seidl, and M. Wolczko, “An object-aware
memory architecture,” SCP, vol. 62, no. 2, pp. 145–163, 2006.

[12] M. Maas, T. Harris, K. Asanovic, and J. Kubiatowicz, “Trash
Day: Coordinating Garbage Collection in Distributed Systems,”
in Proceedings of the 15th Workshop on Hot Topics in
Operating Systems (HotOS), 2015.

[13] D. Terei and A. Levy, “Blade: A Data Center Garbage
Collector,” arXiv:1504.02578 [cs], Apr. 2015.

[14] I. Gog, J. Giceva, M. Schwarzkopf, K. Viswani, D. Vytiniotis,
G. Ramalingan et al., “Broom: Sweeping out Garbage Col-
lection from Big Data systems,” in Proceedings of the 15th
Workshop on Hot Topics in Operating Systems (HotOS), 2015.

[15] N. Artyushov, “Revealing the length of Garbage Collection
pauses,” https://plumbr.eu/blog/garbage-collection/revealing-
the-length-of-garbage-collection-pauses.

[16] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur et al., “The DaCapo Benchmarks: Java
Benchmarking Development and Analysis,” in Proceedings of
the 21st Conference on Object-Oriented Programing, Systems,
Languages, and Applications, 2006.

[17] B. Alpern, S. Augart, S. Blackburn, M. Butrico, A. Cocchi,
P. Cheng et al., “The Jikes Research Virtual Machine project:
Building an open-source research community,” IBM Systems
Journal, vol. 44, no. 2, pp. 399–417, 2005.

[18] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Bian-
colin, C. Celio et al., “The Rocket Chip Generator,” EECS
Dept, UC Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016.

[19] M. Maas, P. Reames, J. Morlan, K. Asanovic, A. D. Joseph,
and J. Kubiatowicz, “GPUs As an Opportunity for Offloading
Garbage Collection,” in Proceedings of the 2012 International
Symposium on Memory Management, 2012.

[20] M. McCandless, E. Hatcher, and O. Gospodnetic, Lucene in
Action, Second Edition: Covers Apache Lucene 3.0. Green-
wich, CT, USA: Manning Publications Co., 2010.

[21] G. Tene, “How NOT to Measure Latency,” https://
www.infoq.com/presentations/latency-response-time, 2016.

[22] A. Shehabi, S. Smith, D. Sartor, R. Brown, M. Herrlin,
J. Koomey et al., “United States Data Center Energy Usage
Report,” Lawrence Berkeley National Laboratory, Tech. Rep.
LBNL-1005775, 2016.

[23] S. Cass, “The 2017 Top Programming Languages,”
https://spectrum.ieee.org/computing/software/the-2017-top-
programming-languages, Jul. 2017.

[24] K. Nguyen, L. Fang, G. Xu, B. Demsky, S. Lu, S. Alamian,
and O. Mutlu, “Yak: A High-Performance Big-Data-Friendly
Garbage Collector,” in 12th Symposium on Operating Systems
Design and Implementation, 2016.

[25] L. Barroso, M. Marty, D. Patterson, and P. Ranganathan,
“Attack of the Killer Microseconds,” Commun. ACM, vol. 60,
no. 4, pp. 48–54, Mar. 2017.

[26] E. Kaczmarek and L. Yi, “Taming GC Pauses for Humongous
Java Heaps in Spark Graph Computing,” 2015.

[27] C. H. Flood, R. Kennke, A. Dinn, A. Haley, and R. Westre-
lin, “Shenandoah: An Open-source Concurrent Compacting
Garbage Collector for OpenJDK,” in Proceedings of the
13th International Conference on Principles and Practices of
Programming on the Java Platform, 2016.

13

[28] P. Liden, “CFV: New Project: ZGC,”
http://mail.openjdk.java.net/pipermail/announce/2017-
October/000237.html, Wed Oct 25 19:45:23 UTC 2017.

[29] “Go GC: Prioritizing low latency and simplicity - The Go
Blog,” https://blog.golang.org/go15gc.

[30] D. Detlefs, C. Flood, S. Heller, and T. Printezis, “Garbage-first
garbage collection,” in Proceedings of the 4th International
Symposium on Memory Management, 2004.

[31] M. Meyer, “A True Hardware Read Barrier,” in Proceedings of
the International Symposium on Memory Management, 2006.

[32] T. Harris, S. Tomic, A. Cristal, and O. Unsal, “Dynamic
Filtering: Multi-purpose Architecture Support for Language
Runtime Systems,” in Proceedings of the 15th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, 2010.

[33] C. Jacobi and A. Saporito, “The Next Generation IBM Z
Systems Processor,” Hot Chips 29 Symposium, 2017.

[34] “How Concurrent Scavenge using the Guarded Storage Fa-
cility Works,” https://developer.ibm.com/javasdk/2017/09/25/
concurrent-scavenge-using-guarded-storage-facility-works/.

[35] S. Beamer, K. Asanovic, and D. Patterson, “Locality Exists
in Graph Processing: Workload Characterization on an Ivy
Bridge Server,” in 2015 International Symposium on Workload
Characterization, 2015.

[36] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore,
J. Anderson, B. Davis et al., “The CHERI Capability Model:
Revisiting RISC in an Age of Risk,” in Proceeding of the 41st
International Symposium on Computer Architecuture, 2014.

[37] E. M. Gagnon and L. J. Hendren, “SableVM: A Research
Framework for the Efficient Execution of Java Bytecode,” in
In Proceedings of the Java Virtual Machine Research and
Technology Symposium, 2000.

[38] D. Gu, C. Verbrugge, and E. M. Gagnon, “Relative Factors
in Performance Analysis of Java Virtual Machines,” in
Proceedings of the 2nd International Conference on Virtual
Execution Environments, 2006.

[39] W. Puffitsch and M. Schoeberl, “Non-blocking Root Scanning
for Real-time Garbage Collection,” ser. JTRES ’08.

[40] M. Maas, K. Asanovic, and J. Kubiatowicz, “Full-System
Simulation of Java Workloads with RISC-V and the Jikes
Research Virtual Machine,” in 1st Workshop on Computer
Architecture Research with RISC-V, 2017.

[41] S. M. Blackburn, P. Cheng, and K. S. McKinley, “Oil and
Water? High Performance Garbage Collection in Java with
MMTk,” in Proceedings of the 26th International Conference
on Software Engineering, 2004.

[42] Y. Lee, “Free Chips Project: A nonprofit for hosting open
source RISC-V implementations, tools, code,” 5th RISC-V
Workshop, 2016.

[43] J. Kang, “SiFive FE300 and low-cost HiFive Development
Board,” 5th RISC-V Workshop, 2016.

[44] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman,
R. Avizienis, J. Wawrzynek, and K. Asanovic, “Chisel:
Constructing Hardware in a Scala Embedded Language,” in
Proceedings of the 49th Design Automation Conference, 2012.

[45] H. Cook, W. Terpstra, and Y. Lee, “Diplomatic Design Patterns:
A TileLink Case Study,” in 1st Workshop on Computer
Architecture Research with RISC-V, 2017.

[46] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee
et al., “FireSim: FPGA-Accelerated Cycle-Exact Scale-Out
System Simulation in the Public Cloud,” in Proc. of the 45th
International Symposium on Computer Architecture, 2018.

[47] D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel,
and B. Jacob, “DRAMsim: A Memory System Simulator,”
Comput. Archit. News, vol. 33, no. 4, pp. 100–107, Nov. 2005.

[48] Z. Tan, A. Waterman, H. Cook, S. Bird, K. Asanovic,
and D. Patterson, “A Case for FAME: FPGA Architecture
Model Execution,” in Proceedings of the 37th International
Symposium on Computer Architecture, 2010.

[49] M. Maas, K. Asanovic, and J. Kubiatowicz, “Grail Quest: A
New Proposal for Hardware-assisted Garbage Collection,” in
Workshop on Architectures and Systems for Big Data, 2016.

[50] “Synopsys SAED EDK32/28 CORE Databook,” Tech. Rep.
Version 1.0.0, 2012.

[51] E. Wang, “HAMMER: A Platform for Agile Physical Design,”
Master’s thesis, EECS Dept, UC Berkeley, 2018.

[52] “Micron System Power Calculator Information,” https://
www.micron.com/support/tools-and-utilities/power-calc.

[53] A. Hussein, A. L. Hosking, M. Payer, and C. A. Vick, “Don’t
Race the Memory Bus: Taming the GC Leadfoot,” in Proc. of
the 2015 International Symposium on Memory Management.

[54] G. Tene, B. Iyengar, and M. Wolf, “C4: The Continuously
Concurrent Compacting Collector,” in Proceedings of the
International Symposium on Memory Management, 2011.

[55] T. B. Preußer, P. Reichel, and R. G. Spallek, “An Embedded
GC Module with Support for Multiple Mutators and Weak
References,” in Architecture of Computing Systems 2010.

[56] M. Schoeberl and W. Puffitsch, “Non-blocking Object Copy
for Real-time Garbage Collection,” in Proceedings of the 6th
International Workshop on Java Technologies for Real-Time
and Embedded Systems, 2008.

[57] C.-y. Cher and M. Gschwind, “Cell GC: Using the Cell
synergistic processor as a garbage collection coprocessor,”
in Proceedings of the 4th International Conference on Virtual
Execution Environments, 2008.

[58] O. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim, and
P. Ranganathan, “Meet the walkers: Accelerating index traver-
sals for in-memory databases,” in Proceedings of the 46th
International Symposium on Microarchitecture.

[59] S. Kanev, S. L. Xi, G.-Y. Wei, and D. Brooks, “Mallacc:
Accelerating memory allocation,” in Proceedings of the
22nd International Conference on Architectural Support for
Programming Languages and Operating Systems.

14

