Keystone: an Open Framework for Architecting Trusted Execution Environments

Authors: Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanovic, Dawn Song


Trusted execution environments (TEEs) see rising use in devices from embedded sensors to cloud servers and encompass a range of cost, power constraints, and security threat model choices. On the other hand, each of the current vendor-specific TEEs makes a fixed set of trade-offs with little room for customization. We present Keystone—the first open-source framework for building customized TEEs. Keystone uses simple abstractions provided by the hardware such as memory isolation and a programmable layer underneath untrusted components (e.g., OS). We build reusable TEE core primitives from these abstractions while allowing platform-specific modifications and flexible feature choices. We showcase how Keystone-based TEEs run on unmodified RISC-V hardware and demonstrate the strengths of our design in terms of security, TCB size, execution of a range of benchmarks, applications, kernels, and deployment models.